Study Material for Expt No. 1 : Flatness Measurement

Determination of the Flatness of a Plane Surface

IN Chapter 6 it is demonstrated how an auto-collimator, or a spirit level, may be
used to measure the deviation from straightness of a machine tool guide-way.
The same principles may be used to determine the deviation from a true plane of
a large surface such as a surface table or machine table.

A flat surface is composed of an infinitely large number of lines, or generators,
and for it to be truly flat the following conditions must be satisfied:

(a) All generators must be straight.
(b) All generators must lie in the same plane.

It should be noted that provided condition (a) is completely realized then
condition (b) must also hold good. The two conditions aré emphasized as it is the
verification of condition (b) which is the main problem. Also it must be realized
that it is not a sufficient test, in the case of a rectangular surface, to measure the
straightness of generators parallel to the edges. These may all be straight but the
surface need not be flat.

Consider a sheet metal box having a pair of diagonally opposite corners
reduced in height, but whose sides are straight. If the box is filled with plaster of
paris which is then levelled off with a straight edge which is kept parallel to one
end, then all lines across the surface must be straight (they were produced by a
straight edge). Similarly all lines at 90° to these generators must be straight, as
the straight edge was controlled by two other straight lines, these being the edges
of the box. Thus if such a surface is tested for flatness along lines parallel to its
sides it will appear to be flat. That it is not is clearly seen from Fig. 12.1, it being
concave across one diagonal and convex across another.

It is immediately seen that if the surface is to be verified as being truly flat
then it is necessary to measure the straightness of the diagonals, in addition to the
generators parallel to the sides.

The measurement of straightness of all of these lines of test may be carried
out with an auto-collimator as is described in Chapter 6, but having made these
measurements it is necessary to relate each line of test to all of the others, i.e.
verifying conditions (b) with which this appendix is concerned.

Consider the surface shown in plan view of Fig. 12.2 on which the eight main
generators are set out. These should be chosen just inside the edges of the table
so that the edge area, which is prone to damage, is avoided. The length of the
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lines should be whole multiples of the length of the base of the spirit level or
reflector stand, whichever instrument is used, and it is advisable to select side and
diagonal lengths in the ratio of 3 :4 : 5.

Fig. 12.1. A surface, all of whose generators parallel to
the sides are straight, but which is not flat.

The procedure is as follows:

(a) Carry out a normal straightness test on each generator.
(b) Tabulate each set of results only as far as the cumulative error column.

(¢) Correct the ends of AC; AG; and CG; to zero. This gives the heights of
points A, C, and G as zero and these three points then constitute an
arbitrary plane relative to which the heights of all other points may be
determined.

(d) From (3) the height of O is known relative to the arbitrary plane
ACG=000. As O is the common mid-point of AE, CG, BF, and HD,
all points on AE are now fixed. This is done by leaving A=0 and cor-
recting O on AE to coincide with the mid-point O on CG.

(¢) Correct all other points on AE by amounts proportionate to the move-
ment of its mid-point. Note that as E.is twice as far from A as the mid-
point, its correction is double that of O, the mid-point.

(f) As E is now fixed and C and G are set at zero, it is possible to put in
CE and GE, proportionally correcting all intermediate points on these
generators.

(8) The positions of H and D, and B and F, are known so it is now possible
to fit in lines HD and BF. This provides a check on previous evaluation
since the mid-point of these lines should coincide with the known position
of O, the mid-point of the surface.

Thus the height of all points on the surface are known, relative to an arbitrary




plane ACG; but this may not be the best plane and correction must be made for
this.

However, consider now an example illustrating the method outlined to relate
a series of test lines to each other.

The table below is a set of curmulative errors for the lines of test designated
in Fig. 12.2 on a surface table.

A B e

H D
0 -

G F E

Fig. 12.2. Surface table marked out with the minimum
number of lines for a flatness test.

Cumulative Errors of Individual Lines of Test

Lines of Test

A-C A-E A-G c-C G-E C-E B-F H-D
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
-1 0 +1 +2 +1 -1 +1 +3
-4 -1 +2 +4 -3 +2 +2 +7
-7 -2 -2 +5 -6 +5 -2 +9
-12 -4 -6 +6 -8 +3 -5 +9
-15 -8 -6 +4 -9 +2 -7 +6
-15 -12 +2 -11 +9
-18 -17 0 -12 +10

=21 -2

=24 0




It is convenient now to consider these lines of test on a plan view of the sur-
face as in Fig. 12.3 in which lines AC, AG and CG have been corrected to zero
at each end. Thus the plane ACG is fixed with the points A, C, and G at Zero,
and points on these three lines are all known relative to this plane.

It is seen that the mid-point is positioned at +6 units above the plane, and
the mid-point of line AE must coincide with this position, while point A is known
to be O.
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Correction for Line A E

Cumulative Carrsetion Height Relative
Error to Plane ACG
0 0 0
0 +2 +2
0 +4 +4
=1 +6 +5
=2 +38 +6
-4 +10 +6
~8 +i2 +4
-12 +14 +2
-17 +16 =
-21 +18 -3
-24 +20 -4
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Determination of the Flatness of a Plane Surface

From the table of cumulative errors the value of the mid-point of AE is
seen to have a value of -4 units. For this to become -6 units it must be raised
by +10 units and thus point E, which is twice as far from A, must be raised by
+20 units, giving E a final value of (—24+20)= -4 units. All other points on
AE are corrected by proportionate amounts, so that a table for AE may be drawn
up as shown below.

These values may be inserted on the diagram of the surface as in Fig. 12.3.
They are included in Fig. 12.4 along with all other corrected figures, as the two
separate diagrams may make the position rather more clear.
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Fig. 12.4. Height of all measured points related to an arbitrary
plane ACG.

The height of point E being known as —4 units, relative to plane ACG,
enables the relative heights of all points on lines CE and GE to be fixed relative
to this plane. Considering line CE it is seen the value of E in the table of cumula-
tive errors is +2 units. Hence to make it —4 units it must be corrected by the
amount — 6 units and all other points corrected by proportional amounts.

Similarly on line GE, point E has a value of - 12 units in the table of cumula-
tive errors and it must therefore be corrected by +8 units, and by proportional
amounts on intermediate points. These tables of corrected values are shown
below.

It remains now only to fix all points on lines BF and HD relative to the
plane ACG.

Considering line BF it is seen that relative to plane ACG, point B has a
value of +1 unit, but the value of point B in the table of cumulative errors is O,
so that initially all points on BF must be increased by +1 unit.




states that the departure from flatness is the minimum separation of a pair of
parallel planes which will just contain all points on the surface. Consider a surface
as shown in Fig. 12.5 () in which three corners have heights of zero, relative to
same arbitrary plane, and the fourth corner has a value of + 10 units relative to
this plane. It might be thought that the departure from flatness is + 10 units, but
if the plane is allowed to tilt about the axis XX and the two opposed free corners
allowed to become equal as in Fig. 12.5 (b) it is seen that the departure from flat-
ness is only + 35 units.

Q) +10 0 +5
X (@) X (b)
Fig. 12.5(a). [Initial assessment shows a flatness error of + 10 units at

one corner relative to an arbitrary plane. (5). By tilting the whole
surface about axis XX, the actual error is shown to be +35 units.

If this procedure is to be followed for the surface shown in Fig. 12.4, it is
seen that the amount any given point is raised or lowered, depends on its distance
from the axis. Thus the calculation for this final correction tG determine the
minimum separation of a pair of parallel planes which will just contain the sur-
face, can become extremely laborious, particularly when it is realized that the
process must be carried out at least twice, on axes at right angles to each other.

A possible simplification of this process has been suggested, using a graphical
method as outlined below. If we consider again Fig. 12.5 (a) and make a projection
of the surface along the line of tilt we see the surface as in Fig. 12.6.

It is seen that a pair of parallel lines may be drawn, which just enclose all
points on the surface, whose separation is much less than + 10 units. In fact, if the
scale is considered, it is 5 units as was found by tilting.

To apply this technique to the points on a surface such as that in Fig. 12.4
the procedure is as follows.

(@) Arrive at the condition shown in Fig. 12.4 and select two points, prefer-
ably on opposite sides, whose values are the maximum positive and
maximum negative relative to the arbitrary plane, in this case ACG.
Connect these points and project at right angles to the line XX connecting
them.

(b) Set off to scale the height of all points relative to a line YY, parallel to
XX, which represents plane ACG.
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Correction for Line C E Correction for Line G E
Cumulative| Correction | Error Rel. Cumulative | Correction Error
Error Rel. to ACG| to ACG Error  |Rel. to ACG|Rel. to ACG
0 0 0 0 0 0
0 -1 -1 0 +1 +1
-1 -2 -3 +1 +2 +3
+2 -3 -1 -3 +3 0
+5 -4 +1 -6 +4 -2
+3 -5 -2 -8 +5 -3
L +2 -6 -4 -9 +6 -3
-11 +7 -4
-12 +8 -4 J

Then point F, whose cumulative value, corrected by +1 unit, becomes —§
units, must be made to coincide with its known value relative to plane ACG of
—2 units, i.e. its value must be increased by +6 units and intermediate values
corrected by a proportional amount.

If a similar process is applied to line HD, as in the tables below, then the
values of the points relative to plane ACG may be inserted in Fig. 12.4.

Correction for Line B F Correction, for Line H D
Cumu- | Initial Error —! Cumu- | Initial Error
lative Cor- Cor- | Rel. to lative Cor- Cor- | Rel. to
Error | rection | rection | ACG Error | rection | rection | A cG
0 +1 0 +1 0 +5 0 +5
0 +1 +1 +2 0 +5 -2 +3
+1 +2 +2 +4 +3 +8 -4 +4
+2 +3 +3 +6 +7 +12 -6 +6
=12 -1 | +4 +3 +9 +14 -8 +6
-5 -4 +5 +1 +9 +14 -10 +4
-9 -8 +6 -2 J +6 +11 -12 -1
+9 +14 -14 0
+10 +15 -16 - u

It should be noted that the mid-points of both of these lines of test coincide
correctly with the value of +6 units for the mid-point of the surface. This pro-
vides a useful check on *he calculations up to this point.

It may be thought that this is the end of the matter, but this is not 50, because
the plane ACG was chosen entirely arbitrarily, and the definition of flatness error




(c) By inspection select the closest pair of parallel lines which will contain
all of the points. It should be noted that one line will have two points
on it, and the other line one point.

(d) Draw a centre line ZZ between these two and refer all points to this line.
0 e

VIEW OF SURFACE IN DIRECTION
OF ARROW A

0 PAIR OF PARALLEL LINES (PLANES)
0 WHICH WILL JUST CONTAIN ALL
0 0.~ POINTS ON THE SURFACE ARE
SEPARATED BY 5UNITS

5#0 FROM ORIGINAL
N DATUM

DATUM FOR ORIGINAL
PROJECTION AT RIGHT
ANGLES TO ARROW A

] +10

A

Fig. 12.6. The true flatness error of +5 units, obtained by tiltfng in Fig. 12.5 (b), can also be
obtained by projection.

It is important to realize that the two parallel lines represent planes at right
angles to the plane of the paper. It may be possible to bring them still closer by
inclining them, as a pair, to one side or the other. This can be done by repeating
the above process, i.e. draw another plan view of the surface inserting the results
from (d) above, and project again at right angles to the line of the original pro-
jection.

This procedure has been carried out for the surface referred to previously,
the results being shown in Fig. 12.7.

It must be emphasized that this is not an exact method. It contains an error
due to the differences in scales for lengths and heights of the surface. Also more
than two projections may be required but in practice it has been found that the
percentage reduction in the separation of the parallel planes containing the sur-
face, by continued projection, is not significant unless the line of the original pro-
jection is particularly badly chosen.

Another method of carrying out this process is to refer all points to x, y and z
axes, thus fixing them in space. It is then possible to determine the minimum
separation of the parallel planes containing the surface by finding the best plane
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Fig, 12.7. Determination of flatness error by graphical methods.

The first projection only is shown. It may be necessary to refer all points to line ZZ and project again
at 90° to the original projection, but in this case it is :imhkely as some of the new maxima are widely
spaced.

so that the sum of the squares of all points from it is a minimum. This is an exten-
sion of the method of least squares (1:51) operating in three dimensions. With a
large number of points to be considered, a computer is necessary for this
calculation.

Finally it must be realized that whatever method is used it is a laborious
process. Many more points would be taken than have been used in the example, a
complete grid of the surface being tested, all lines related, and cross-checked in
the calculations. The authors feel that without the aid of a computer the effort

involved by the graphical method increases least as the number of points surveyed
increases.




Study Material for Expt No. 2 : Calibration of Dial Indicator

10.1. In'troduction

Gauges are used to check the products. The accuracy of gauges plays very important
role in inspection of the products. If a gauge is not accurate, the reading on the job indicated
by it will also not be accurate. Hence more accurate methods are required for testing the gauges.

Micro-comparator is one of the instruments used for checking various gauges in the
industry. It ensures that the wear effects do not allow the gauge dimensions to fal] outside the
prescribed limits.

The absolute accuracy of a comparator is guaranteed_by use of standard slip gauges,
and slip gauges employed for setting working gauges are themselves checked by micro-com-
parator for wear effects. For very accurate and for absolute results light wave interference
method is used.

The indirect method of testing gauges consists in using two comparators where relative
difference from standard size is obtained. Comparators are available upto the accuracy of 75
millionth of a mm. -

In addition to gauges, all linear and angular measuring instruments must be calibrated
from time to time for best results. So we will first consider the calibration of linear and angular
measuring instruments.

10.2. Calibration of Linear and Angular Measuring Instruments

Every measuring instrument must be provable, i.e. it must be caused to prove its ability
reliably. The procedure for this is calibration. The variation in any observation on a product
depends upon the variation in the product due to process of manufacture and variation due to
measuring process, i.e. it can be expressed as ! Gppsorvarion = Oprocess + Omeasurement:

In order to keep Oopservation minimum so that product as a whole is reliable, O nsirams
should be kept minimum which in other words means that measurement process or the
Instruments used should be precise with minimum of variation in the measured values. In
order to maintain the precision accuracy of measuring device its periodical calibration is
essential as from the moment an instrument is put into use it begins to deteriorate in accuracy
and its precision. To a degree, this takes place even if the instrument is not being used.
Regarding calibration it is said that in a plant where accuracy is not properly organised, 30%
to 50% of the measuring equipment used do not give true results.

In order to maintain accuracy of measuring instruments, following procedure should be
followed. -

(1) Each instrument should be numbered. It serves the easy location of the instrument.
(i) A card record should be established for each instrument.




Table 10.1

Calibration Card
Defects Errors/ Details of Remarks Calibrated Place of Next TInitial Lab.
Found Defects After repairs by use calibration Ie
(if any) repairs carried out due on
(if any)
Instrument .......ccccoeeeene Type and Class .......ccceeeveueenee. Inventroy No. ............... ST
Table 10.2

Annual Calibration Programme For General Measurement Instruments

Empty—Indicates that calibration is due.

O—Indicates that calibration has been completed for all the instruments due for calibration
in the month.

SHOPS
T n
Mm:hs Calipers, Sine Limit Slip Levels, Others
Micrometers, bars gauges gauges surface
Protractors, plates
dial gauges etc.
etc.
January (6]
February (o] e} (0] (¢] (0]
March . o) (o]
April 0 [0} [0}
May [e] (6] (o]
June (0] (0] (0]
July (o} 0 [0}
August (0] (o] (0]
September (o] (0] (0]
October o o (o]
November o] (0] (o]
December [0} o




(z2z) Checking interval should be established.
(iv) Some system should be adopted for providing adherence to the checking schedule.
(v) The record of the findings of the check should be maintained.

(vi) Record of checks should be further studied and analysed so as to improve upon the
system.

It shall be preferable to have individual history card for each instrument. History card
can be of type given in Table 10.1. These types of history cards can be prescribed using Kardex
cabinets.

As regards checking interval, this mainly depends upon the frequency of use of the
instruments, and the precision requirement of the measurements. For example in machine
shop and tool room the measurements made are of more precise nature as compared to those
made in casting and fabrication shops, so instruments used in these shops require more
frequent calibration. It is always better to prepare annual calibration programme for instru-
ments used in various shops, so as per the programme the shops send the instruments for
calibration. The annual programme can be of the type as suggested in Table 10.2 which is for
general measuring instruments such as vernier calipers, micrometers, protectors, limit
gauges, slip gauges, dial gauges etc. For optical measuring instruments like universal micro-
scopes, tool maker’s microscopes ete. annual programme can be made for periodical calibration
as well as for general preventive maintenance which besides general cleaning and lubrication
will also consist of carrying visual checks like relative movements of moving parts, presence
of corrosion, scratch marks, visibility and correct working of optical system etc. Such visual
checks should be carried out more frequently. In Table 10.3 is shown such chart wherein the
annual schedule for calibration and preventive maintenance of optical instruments is drawn.
Table 10.4 also shows the history card to be made for limit gauges. For every gauge or gauge

Table 10.3
Annual Schedule for Preventive Maintenance and
Calibration of Optical Metrological Instruments
A Indicates about preventive maintenance being due.
O Indicates about calibration being due.

Instruments Months

dan. | Feb. | Mar. | Apr. | May | June | July | Aug. Sept. | Oct. | Nov. | Dec.
Universal A A A A A A A A A A A A
Microscope
a O m] [
SI. No. ...
Tool Makers A A A A A A A A A A A A
Microscope =
O a m}
Sl. No. ...
Interferometer A A A A A A
O O
Sl. No. ...
Shadow graph A A A A A A A A A A A A
[£] m] m]
Sl. No. ...
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set an individual history card should be maintained. For gauges of any particular size,
sometimes it becomes difficult for shop or inspection personnel to know whether the gauges
are available or not.

For this purpose the charts could be maintained which indicate the maximum/minimum
inventory stock quantity level for these gauges so that at any time when the quantity available
in the stores goes down the minimum value, action should be taken for the procurement.

Here are described the methods of calibration of some of the important metrological
instruments.

10.2.1. General Metrological Instruments. (a) Vernier Calipers and other Vernier
Instruments.

The following table gives the allowable deviation in the parameters.

Parameters Permissible Error
Least count 0.02 mm. Least count 0.05 mm -~

Zero error 0.02 0.05

Flatness of measuring jaws 0.003 0.004
Parallelness of measuring jaws 0.010 0.015

Error in readings 0.02 0.05

Spherical portion size of inside +0.02 +0.03
measuring jaws

The zero error is checked by bringing in contact the jaws, and the shift of zero of main
scale is observed with respect to zero of vernier scale. The flatness of the measuring jaws is
checked using a straight edge having sharp edge of class 1 accuracy. The straight edge is put
over the surface and the light gap observed between the straight edge-and the surface and
compared with standard light gap formed between another straight edge and an optical flat.
The parallelness is checked by inserting a slip gauge of any value between the jaws at various
positions and determining the out of parallelness using slip gauges.

Error in readings along the entire range is also found out using slip gauges, In case of
vernier calipers having spherical inside measuring jaws, the width of spherical portion is
checked using a passmeter or dial type micrometric comparator. ’

(b) Dial Gauges. The dial indicators of least count 0.01 mm can be conveniently
calibrated using passmeter or micrometer dial comparator of least count (L.C.) 0.002 mm. Here
dial indicator is inserted in place of fixed right hand side flat jaw and the dial tip rests on the
movable jaw. The dial indicators can also be calibrated using slip gauges and by fixing the dial
gauge in a comparator stand.

The following table gives the permissible errors in the dial indicators :

Parameter ° Permissible Error
. ' L.C.0.01 mm L.C. 0.001 mm L.C. 0.002 mm
Maximum error along entire | 0.02 mm along entire 0.003 mm 0.004 mm
range and in any one turn range

0.006 if any one turn.

Variation in readings along | 0.02 mm. 0.003 mm 0.004 mm
entire range.




(¢) Micrometers. In case of micrometers the following are the main points to be
checked :

(i) General appearance and relative movement of moving parts.

(ii) Checking initial zero setting for micrometers of size 25—50 mm or more.
(iii) Flatness of measuring surfaces.
(iv) Parallelness of measuring surfaces.

(v) Error in readings.

In general appearance, the micrometer is thoroughly checked for presence of scratches,
dents etc. on measuring jaws, as well as, for corrosion marks, scratches, dents etc. on the
surfaces of measuring drums, for proper working of ratchet system. The relative movement of
moving parts is also checked which should be smooth. The working of lock system is also
checked. The zero error of micrometer is checked and if it is found wrong it is adjusted easily
for micrometers of size 25—50 mm and more. The size of the setting piece is checked on
interferometer or any other comparator set to read upto 0.0001 mm. The permissible error
allowed in its size 0.001 mm for micrometers upto size of 100 mm. The flatness error is checked
by keeping optical flat on each jaw. The maximum permissible error is 0.0009 mm. The
parallelness error is also checked using four optical flats of different width so that one complete
turn of micrometer drum is made. The optical flat is set in such a way that total fringes on
both sides are minimum. The permissible error in parallelity is 0.002 mm for micrometersupto
100 mm size and 0.004 mm for micrometers above 100 mm and upto 200 mm size.

The error in readings is checked using slip gauges so as to cover the entire range. The

maximum permissible error is 0.004 mm for class I micrometers and 0.008 mm for class II
micrometers.




Study Material for Expt No. 3 : Geometric characteristics
Part A

CIRCULARITY O

Definition. Circularity is the condition on a surface of revolution where:

1. - in the case of a cylinder or cone, all points of the surface intersected by anyiplane. |
perpendicular to a common axis are equidistant from their axis; el el
Al
! ‘
2. in the case of a sphere, all points of the surface intersected by any plane passing through a
common center are equidistant from that center.

CIRCULARITY TOLERANCE

A circularity tolerance specifies a tolerance zone bounded by two concentric circles within
which each circular element of the surface must lie and applies independently at any plane
as described above.

CIRCULARITY TOLERANCE APPLICATION

Limits of size exercise control of circularity within the size tolerance. Often this provides
adequate control. However, where necessary to further refine form control, circularity toler-
ancing can be used on any figure of revolution or circular cross section.

The example illusirates a part with a circularity tolerance of .002 specified on a cylindrical
part. ‘

The interpretation shows how one establishes the .002 tolerance zone. Note that the toler-
ance zone is the width of the annular zone between the two concentric circles.

A circularity tolerance zone is established relative to the actual size of the part when meas-
ured at the surface periphery at any cross section perpendicular to the part axis. It should be
noted that the circularity tolerance applies only at the cross-sectional point of measurement,
and is relative to the size at that point. Therefore, a cylindrical part with circularity tolerance
control could taper or otherwise vary in its surface contour within its size tolerance range,
yet still meet circularity requirements if it is within the circularity tolerance at that point.

The part size in this example has been assumed to measure .503 at its largest point at the
cross section selected for measurement. The .002 circularity tolerance zone is then estab-
lished by two theoretically perfect concentric circles, one at the .503 diameter and the other
.004 smaller at the .499 diameter. This establishes the tolerance zone of .002 widrth between
the concentric circles. To be acceptable, the part surface at that cross section must fall
within the .002 wide tolerance zone.

As is seen, the tolerance zone is established relative to the part size wherever it may fall in
its size tolerance range. That is, the part size is first determined and its circularity is then
defined as a refinement of the part form relative to that size. Unless otherwise specified, any
established size at any point along the surface can be used to determine the circularity toler-
ance zone. It is therefore seen that the circularity tolerance may be based on different sizes
on the same part. The circularity tolerance zone, however, remains constant.
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CIRCULARITY OF A CONE

Example | below illustrates a cone-shaped part for which a circularity tolerance 3 1
specified. As previously discussed, the periphery at any cross section perpendiculir to the
axis must be within the specified tolerance of size and must lie between the two concentric
circles (one having a radius .003 larger than the other).

EXAMPLE 1
©.850 +.005——

$.405 *.005

(O] .003

MEANING 2
SYMBOL MEANING

WITHIN .003 WIDE
TOL ZONE

THIS FEATURE

A=l MUST BE CIRCULAR
S e PHERANGE THE PERIPHERY AT ANY CROSS SECTION
SECTION A-A PERPENDICULAR TO THE AXIS MUST BE

WITHIN THE SPECIFIED TOLERANCE OF
SIZE AND MUST LIE BETWEEN TWO
CONCENTRIC CIRCLES (ONE HAVING A
RADIUS .003 LARGER THAN THE OTHER).



CIRCULARITY OF A SPHERE

Circularity of a spherical part is given the same basic interpretation (see Example 2 below)

except that the tolerance control ref

erence is to any cross section passing through a common

center rather than to any cross section perpendicular to-the axis, as in the conventional ap-

plication of circularity tolerancing.

EXAMPLE 2

S®.500 +.005

(Ol o]

)

MEANING
B
A

.003 WIDE TOLERANCE

ZONE

SYMBOL MEANING

[OLwa]

WITHIN .003 WIDE
TOL ZONE

THIS FEATURE

MUST BE CIRCULAR

THE PERIPHERY AT ANY CROSS SECTION PASSING
THROUGH A COMMON CENTER MUST BE WITHIN
THE SPECIFIED TOLERANCE OF SIZE AND MUST BE
BETWEEN TWO CONCENTRIC CIRCLES (ONE HAVING
A FIADIUS .003 LARGER THAN THE OTHER). HENCE,
THIE SURFACE MUST LIE BETWEEN TWO
CONCENTRIC SPHERES SEPARATED .003 APART.

.




' PERPENDICULARITY |

(SQUARENESS, NORMALITY)

Definition. Perpendicularity is the condition of a surface, median plane, or axis which is at
exactly 90° to a datum plane or axis.

PERPENDICULARITY TOLERANCE

A perpendicularity tolerance specifies:
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a tolerance zone defined by two parallel planes perpendicular to a datum plane within which
a. the surface of a feature must lie (see Fig. 1);

b. the median plane of a featurec must lie (see Fig. 2);

a tolerance zone defined by two parallel planes perpendicular to a datum axis within which
the axis of a feature must lie (see Fig. 3);

a cylindrical tolerance zone perpendicular to a datum plane within which the axis of a feature
must lie (see Fig. 4); |

a tolerance zone defined by two parallel, straight lines perpendicular to a datum plane
or datum axis within which an element of the surface must lie (see Fig. S—radial

perpendicularity).




PARALLELISM // ‘

Definition. Parallelism is the condition of a surface or axis which is equidistant at al
points from a datum plane or axis.

PARALLELISM TOLERANCE

A parallelism tolerance specifies:

1. a tolerance zone defined by two planes or lines parallel to a datum plane (or axis) within
which the considered feature (axis or surface) must lie (see Figs. | and 2)

2. a cylindrical tolerance zone parallel to a datum axis within which the axis of the feature
under consideration must lic (see Fig. 3).

FIGURE 1 FIGURE 2 FIGURE 3

7Ok ZQHE TOL ZONE

PARALLEL
TOL ZONE

PARALLEL

DATUM PLANE

PARALLELISM APPLICATION

Note in the following example that the bottom surface has been selected as the datum and
the top surface is to be parallel to datum plane A within .002.

The Meaning beneath the example clarifies the symbol: It reads, *“This feature must be par-
allel within .002 to datum plane A.”

The lower example illustrates the tolerance zone and the manner in which the surface must
fall within the tolerance zone to be acceplable. Note that the tolerance zone is established
parallel to the datum plane A. Note also that the parallelism tolerance, when applied to a
plane surface, controls flatness if a flatness tolerance is not specified (that is, the implied
flatness will be at least as good as the parallelism).




Part B

6.23 Tests for Straightness and Flatness

It will be appreciated that for a carriage to move along a straight line in both
vertical and horizontal planes, the controlling guide-ways must themselves be
straight. Tests for this condition may be carried out in several ways, the most
convenient of which are by precision level and by the auto-collimator. It is the
latter method which will be discussed here, but the method of tabulating and using

" the results of individual measurements is similar in each method.

The principle of measurement by the auto-collimator has been dealt with in
Chapter 4, but the method of determination of straightness and flatness is dealt
with now. .

Assume that the straightness of a lathe bed 2 m in length is to be measured.
The general arrangement of measurement would be as in Fig. 6.4, the auto-
collimator being set up independently of the lathe bed, about $ m from one end,
the parallel beam from the instrument being projected along the length of the bed.
A particularly rigid support, preferably of the tripod type, is required for this.
Assuming the bed to have flat-ways, the plane reflector is set on to the end of the
bed nearer the instrument and a reflection obtained from it such that the image
of the cross-wires of the collimator appear nearer the centre of the field. The
reflector is then moved to the other end of the bed, and provided the general
line of movement of the reflector has been reasonably parallel to the optical axis
of the instrument, then the image of the cross-wires will appear in the field of the
eyepiece at this position of the reflector also. This procedure ensures that reflections
at intermediate positions will be within the field, and is thus an approximate check
on the level of the bed in the horizontal plane.




A straight-edge should now be set down on the bed, to ensure that the reflector
is stepped along it in a straight line.
Assume that the distance between the support feet of the reflector is 103-5 mm,
and that the interval length at which measurements are taken is also 103-5 mm.
2

A2 .
Now, since 1 min of arc =—— radians
ST 60 x 60

. 2m
then, on a base length of 103-5 mm, 1 min of arc =360 <60 % 103 5 mm

=0-03 mm '

That is, each tilt of 1 min of arc of the reflector as it is stepped along the bed-
way corresponds very closely to a rise or fall of the guide-way surface of 0-03 mm.

Having ensured that an image of the cross-wires will be received by the auto-
collimator when the reflector is set at the end positions of the bed, the reflector is
now set at the forward end of the bed, nearest the instrument, to begin the series
of readings. This condition, and those for subsequent readings, is shown in Fig. 6.4
in which the rise and fall of the bed surface is greatly exaggerated.

Fig. 6.4. Auto-collimator used for checking the straightness of lathe-bed guide-ways.

With the reflector set at A-B, the setting wires in the auto-collimator eyepiece
are moved to straddle symmetrically the image of the horizontal cross-wire, by
the suitable rotation of the micrometer drum, and the micrometer reading is noted.
The reflector is then moved 103-5 mm to the position B-C and a second reading
is taken on the micrometer drum. Successive readings at C-D, D-E, E-F, etc.,
are taken until the length of the bed has been stepped along. A second set of read-
ings should now be obtained by stepping the reflector in the reverse direction
along the bed, to reveal any serious errors in the first set of readings. Assuming
none have occurred, the mean values of each set of readings may now be recorded,
and these represent the angular positions of the reflector, in seconds relative to
the optical axis of the auto-collimator at each of its positions along the bed.

The method of tabulation of the results of measurement are shown on p. 121.

Column 1 gives the position of the plane reflector at 103-5 mm intervals along
the bed. Column 2 gives the mean reading of the auto-collimator to the nearest
second. In practice it is possible to observe sub-divisions of seconds, and this should
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be done. Column 3 gives the differences of each reading from the first. In column 4
these differences are converted to the corresponding linear rise or fall, on the
basis of 1 sec of arc =0-0005 mm per 103-5 mm. The second zero introduced at the
head of column 4, when associated with the previous zero in this column, repre-
sents the heights of the two feet of the reflector support mounting when in its
original position. Column 5 gives the heights of the support feet of the reflector
above the datum line drawn through their first position. That is, the values in
column 5 are obtained by successively adding, algebraically, the values in column 4.
This is necessary because the individual heights obtained in column 4 are the
heights of the back feet of the support relative to the front feet in a given position
and not relative to the datum.

1 l 2 ‘ 3 4 5 6 7
Rise or Adjustment Errors
Difference | Fallin | Cumulative | to bring Jfrom
Position | Reading | from Ist Interval Rise or both ends Straight
on Reading | Length Fall | toZero Line
Surface | min sec (sec) (0-001 mm) | (0-001 mm) (0-001 mm) | (0-001 mm)
0 2:...10 0 0 0 0 0
2 =10 0 0 0 - 20 -2
2 D 1D +2 +1-0 + 1-0 - 40 -3
8 2L +5 +2:5 + 35 - 60 -2-5
4 22T +7 +3:5 + 70 - 80 -1-0
5 2::18 +8 +4-0 +11-0 -100 +1-0
6 2 17 +7 +3-5 +14-5 =12:0 +2:5
7 S +5 +2-5 +17-0 -14-0 +3:0
8 D 13 +3 +1-5 +18:5 -160 +2-5
9 2 9 -1 =05 +18:0 —-18-0 0
10 2ilal2 +2 +1-0 +19-0 -20-0 ~1-0
11 2014 +4 +2-0 +21-0 =220 -1-0
12 2. .16 +6 +3-0 +24-0 -24-0- 0

The total rise in the surface of the bed over a 1} m length from a datum
along the line of the first reading is 24 um. In column 6 this total rise is pro-
portioned over the twelve readings taken, i.e. in increments of 24/12=2 um.
These values (column 6) are subtracted from the values in column 5 to give the
errors (column 7) in the bed from a straight line joining the end points and within
which the series of readings were obtained (i.e. it is as though a straight-edge were
laid along the bed profile and touching the end points of the test surface when they
are in a horizontal plane). The rise and fall of the surface relative to the straight-
edge would be the values given in column 7.

A graphical representation of this is shown in Fig. 6.5 in which the values




L

given in columns 5, 6, and 7 are plotted. In the graph of cumulative errors a
straight line has been passed through the end points, and represents the straight
line connecting the ends of the bed. In the graph of straightness errors, this line
has been used as the axis, and thus the values plotted in the previous graph have

the same relationship to it.

It is important to note that the increasing values for the readings given in
column 2 of the table indicate the increasing angle of tilt of the top of the reflector
towards the optical axis of the auto-collimator. Increasing readings have therefore
indicated positive (+) values for the linear rise and fall, and vice versa. The lathe
bed is thus both concave and convex along its length relative to the datum line

joining its end points.
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Fig. 6.5. Graphs of cumulative error and actual error in a machine bed, determined

using an auto-collimator.
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The test described relates to a flat-bed lathe, but the method applies also to a
bed with vee guide-ways. In this case, however, the plane reflector mount must be
supported on a carriage having a vee accurately ground in its base, to suit the vee
of the bed. The apex of the carriage vee should be relieved so that contact is made
only at the sides of the vee. With this arrangement, the straightness of the bed in
the horizontal plane can be determined, as well as in the vertical (i.e. the tilt about
the vertical axis indicates changes in the angle of the reflector in the horizontal
plane).

As in the previous test, the reflector is stepped along the bed in interval
lengths of 103-5 mm but in this case the auto-collimator tube is rotated 90° in its
housing, to a pre-set stop, so that the pair of setting wires in the eyepiece are
vertical. Changes of position of the image of the vertical member of the cross-
wires are then read on the micrometer drum, and would be recorded in column 2.

Associated with the error in the straightness of a lathe bed may be any cross-
wind which exists due to each way of the bed having different errors in
straightness, or, if straight, lying in non-parallel planes. This condition cannot be
detected with an auto-collimator, since the reflector would be merely rotating in
its own plane as it was stepped along the bed. The most practical and convenient
method of test is to step a precision level, laid transversely across the bed, along its
length. If necessary, a bridge piece should be used as the level carriage, both to
span the width of the bed, and to accommodate the vee guideways.

A computer program for handling this type of calculation is shown in Chapter
11, section 11.211.




Study Material for Expt No. 4: Screw Thread Measurement

Metrology of Screw Thread

13.1. Introduction

Screw thread has generally two functions to perform, viz., transmission of power and
motion, and to act as fastener. Second function is rather more important, so we will be more
concerned with Vee-form of threads. The object of dimensional control in case of plain shaft
and hole is to ensure a certain consistency of fit. In the case of threaded work, the object is to
ensure mechanical strength whichis dependent upon the amount of flank contact and not upon

the fit.
9373p
_T__r- jogz  *1808F 2682
6495P -6000P
/ 47.5°
S1082 @ -2682°P
_r' 1808
125 P :
American Standard British Association
i f"‘“’j 125 P 3
25P . H.__ - _’{ yl-_

s— 5P P 45 575P

Knuckle Butress 45° (continental) Acme
The most commonly used thread-forms all over the

world are shown in Fig. 13.1. These mainly consist of the 4, \4——-” —"'{ y

British Whitworth and B.A. series, and in the Metric -+ ..., -1082 P
series the American Standard series. Unified thread { e
which is an attempt to achieve interchangeability be- gsop 6135 F
tween threads used in England and America has been %
added recently. The ISO metric threads recommended for A aiad3r
use in Indian Industry by BIS have been dealt with i
separately in details in Chapter 14. Unified

Fig. 13.1. [Not to scale]
13.2. Screw Threads Terminology Commonly used thread forms.

(1) Screw thread. A screw thread is the helical ridge produced by forming a continuous
helical groove of uniform section on the external or internal surface of a cylinder or cone. A
screw thread formed on a cylinder is known as straight or parallel screw thread, while the one
formed on a cone or frustrum of a cone is known as tapered screw thread.




L ENGINEERING METROLOGY

(2) External thread, A thread formed on the outside of g workpiece is called external
thread e.g., on bolts or studs ete.

(3)Internal thread A thread formed on the inside ofa workpiece is called internal thread
€.8. 0n a nut or female screw gauge. :

(4) Multiple-stars screw thread. This ig produced by forming two ormore helical grooves,
equally spaced and similarly formed in an axial section on a cylinder. Thig gives a ‘quick
traverse’ without sacrificing core strength.

(8) Axis of a thread. This is imaginary line running Iongitudinally through the centre of
the screw. '

(6) Hand (Right or left hand threads). Suppose a screw is held such that the observer ig
looking along the axis. Ifa point moves along the thread in clockwise direction and thus moveg
away from the observer, the thread is right hand ; and if it moves towards the observer, the
thread is left hand.

(7) Form of thread. This is the shape of the contour of one complete thread as seen in
axial section,

(8) Crestof thread. Thisis defined as the Prominent part of thread, whether it be external
or internal,

(9) Root of thread. This is defined as the bottom of the groove between the two flanks of
the thread, whether it be external or interna].

(10) Flanks of thread. These are straight edges which connect the crest with the root.

(11) Angle of threqd (Included angle), This is the angle between the flanks or slope of
the thread measured in an axig] plane.

(12) Flank angle. The flank angles are the angles between individual flankg and the

(16) Lead angle. On a straight thread, lead angle is the angle made by the helix of the
thread at the pitch line with plane perpendicular to the axis. The angle is measured in an axial
. Plane,

(17) Helix angle. On straight thread, the helix angle is the angle made by the helix of
the thread at the pitch line with the axis. The angle is measured in an axia] plane.

(19) Axial thickness."[‘@'}g. is the distance between the opposite faces of the same thread
Mmeasured on the pitch cylinde in a direction Pparallel, the axis of thread, B




angle of thread. The virtual diameter being the modified effective diameter by pitch and angle
errors, is the most important single dimension of a screw thread gauge.

In the case of taper screw thread, the cone angle of taper for measurement of effective
diameter, and whether pitch is measured along the axis or along the pitch cone generator also
need to be specified.

13.2.1. Errors in Threads. In the case of plain shafts and holes, there is only one
dimension which has to be considered (i.e. diameter), and errors on this dimension if exceed
the permissible tolerance, will justify the rejection of part. While in the case of screw threads
there are at least five important elements which require consideration and error in any one of
these can cause rejection of the thread. In routine production all of these five elements (major
diameter, minor diameter, effective diameter, pitch and angle of the thread form) must be
checked and method of gauging must be able to cover all these elements.

Errors on the major and minor diameters will cause interference with the mating thread.
Due to errors in these elements, the root section and wall thickness will be less, also the flank
contact will be reduced and ultimately the component will be weak in strength. Errors on the
effective diameter will also result in weakening of the assembly due to interference between
the flanks.

Similarly pitch and angle errors are also not desirable as they cause a progressive
tightening and interference on assembly. These two errors have a special significance as they
can be precisely related to the effective diameter.

Now we will consider come errors in detail and define some terms.

13.2.2. Drunken Thread. This is the one having erratic pitch, in which the advance of
the helix is irregular in one complete revolution of the thread.

Thread drunkenness is a particular case of a periodic FRUE THREAD
pitch error recurring at intervals of one pitch. In such a Dﬁj’ggfg
thread, the pitch measured parallel to the thread axis will
always be correct, the only error being that thethreadisnot V-7
cut to a true helix. If the screw thread be regarded as an
inclined plane wound around a cylinder and if the thread be
unwouncri) from the cylinder, (i.e. development of the thread i"—" . D"’”—'I
be taken) then the drunkenness can be visualised. The helix
will be a curve in the case of drunken thread and not a Fig. 13.3. Drunken thread.
straight line as shown in Fig. 13.3.

Tt is very difficult to determine such errors and moreover they do not have any great
effect on the working unless the thread is of very large size.

13.2.3. Pitch Errors in Screw Threads. Generally the threads are generated by a
point cutting tool. In this case, for pitch to be correct, the ratio of the linear velocity of tool and
angular velocity of the work must be correct and this ratio must be maintained constant,
otherwise pitch errors will occur. If there is some error in pitch, then the total length of thread
engaged will be either too great or too small, the total pitch error in overall length of the thread
being called the cumulative pitch error. Various pitch errors can be classified as :

13.2.3.1. Progressive Pitch Error. This error occurs when the tool work velocity ratio

is incorrect though it may be constant. It can also be caused due to pitch errors in the lead
screw of the lathe or other generating machine.

The other possibility is by using an incorrect gear or an approximate gear train between
work and lead screw e.g., while metric threads are cut with an inch pitch lead screw and a
translatory gear is not available. A graph between the cumulative pitch error and the length
of thread is generally a straight line in case of progressive pitch error (Fig. 13.4).
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13.2.3.2. Periodic

Pitch Error. This repeats 1
itself at regular intervals o I
along the thread. In this & 8
: 5 & 4
case, successive portions W [
of the thread are either § §
longer or shorter than the g T N
mean. This type of error ¥ g
occurs when the tool work "E 3
velocity ratio is not con- g' 3
stant. This type of error 3 3
also results when a thread LENGTH OF THREAD — = \/1-5”57"’ ORIHRERD
is cut from a lead screw
which lacks squareness in Fig. 13.4. Progressive Error. Fig. 13.5. Periodic Error.

the abutment causing the leadscrew to move backward and forward once in each revolution.
Thus the errors due to these cases are cyclic and pitch increases to a maximum, then reduces
through normal value to a minimum and so on. The graph between the cumulative pitch error -
and length of threads for this error will, therefore, be of sinusoidal form.

13.2.3.3. Irregular Errors. These arise from disturbances in the machining set-up,
variations in the cutting properties of material etc. Thus they have no specific causes and
correspondingly no specific characteristics also. These errors could be summarised as follows :

Erratic Pitch. This is the irregular error in pitch and varies irregularly in magnitude
over different lengths of thread. =

Progressive Error. When the pitch of a screw is uniform, but is shorter or longer than
its nominal value, it is said to have progressive error. E

Periodic Error. If the errors vary in magnitude and recur at regular intervals, when
measured from thread to thread along the screw are referred to as periodic errors.

13.4.5.4. Three wire method. This method of measuring the effective diameter is an
accurate method. In this three wires or rods of known diameter are used : one on one side and
two on the other side [Fig. 13.17 (a) and (b)]. This method ensures the alignment of micrometer
anvil faced parallel to the thread axis. The wires may be either held in hand or hung from a
stand so as to ensure freedom to the wires to adjust themselves under micrometer pressure.




) ' b)
Fig. 13.17. Three wire method of measuring effective diameter.

M = distance over wires, E = effective diameter, r = radius of the wires, d = diameter of
wires, h = height of the centre or the wire or rod from the effective diameter, x = angle of thread.

From Fig. 13.17 (b), AD = AB cosec x/2 = r cosec x/2
H = DE cot x/2 = p/2 cot x/2
CD = H/2 = p/4 cot x/2
h=AD-CD
|~ — r'&cosecx/2 — pl4 cot x/2
Distance over wires =M =E + 2h + 2r
= E + 2 (r cosec x/2 — p/4 cot x/2) + 2r

—E + 2r (1 + cosec x/2) — p/2 cot x/2
or @d@ d@+ Wm@}—ep&wtﬂﬁé
(i) In case of Whitwortfi thread : A =
x = 55°, depth of thread = 0.64p, so that, E = D — 0.64p and cosec x/2 = 2.1657, cot x/2 = 1921
M=E +d (1 + cosec x/2)— p/2 cot x/2 = D — 0.64p + d (1 +2.1657) - p/2(1.921)
=D + 3.1657d — 1.6005p
M =D + 3.1657d — 1.6p, where D = outside dia.
(i) In case of metric threads : Depth of thread = 0.6495p.
- so, E=D-0.6495p,x =60°, cosec x/2 =2; cot x/2 = 1.732
M=D-06495p +d (1+2)—p/2 (1.732)=D + 3d —(0.6495 + 0.866)p =D +3d — 1.5155p.

We can measure the value of M practically and then compare with the theoretical values
with the help of formulae derived above. After finding correct value of M and knowing d, E can
be found out.

If the theoretical and practical values of M (i.e. measured over wires) differ, then this
error is due to one or more of the quantities appearing in the formula.

Effect of lead angle on measurement by 3-wire method. If the lead angle is large (as with
worms ; quick traversing lead screw, ete.) then error in measurement is about 0.0 125 mm when
lead angle is 4.5° for 60° single thread series.

For lead angles above 4.5° compensation for rake and compression must also be
considered.

There is no recommendation for B.S.W. threads.




Rake Correetion in U.S. Standard :

: e
E=M+%—x(l+cosec§+%coa%cot%}

where x/2 = half the included angle of threads, E = effective diameter, M = actually measured

diameter over wires, n = number of threads/inch, d = diameter of wire, S = tangent of the helix

angle in thread.

(Also refer Problem 13.5 at the end of this chapter for rake correction and compression
correction).

13.4.6. Best Size Wire. This wire is of such diameter that it makes contact with the
flanks of the thread on the effective diameter or pitch line. Actually effective diameter can be
measured with any diameter wire which makes contact on the true flank of the thread, but the
values so obtained will differ from those obtained with ‘best size’ wires if there is any error in
angle or form of thread. It is recommended that for measuring the effective diameter, always
the best size wire should be used and for this condition the wire touches the flank at mean
diameter line within + 1/5 of flank length (Refer Solved Problem 13.2). With best size wire, any
error on the measured value of simple effective diameter due to error in thread form or angle
is minimised.

‘:‘t

2cosx/2 |
[Refer Solved Problem 13.1 at the end of this chapter]

With best size wire, P-value = d (cosec x/2 + 1) — d cos x/2 cot x/2

_ o[ 1fsinx/2-cos?x/2 ) : p 1l+sinx/2
_d( R XD J—d(l+smx/2%2. cos x/2

It can be shown that size of best wire diameter =d =

: 13.4.7. Measurement of Effective Diameter of Tapered Threads. The measure-
ment of the effective diameter of taper threads is not made perpendicular to the axis, but at an
angle depending on the taper. The measurement is made at a given point or distance from the
end of the thread, and in the three wire method, the single wire is placed at this point. The
other two wires are placed in the two opposite grooves and care must be taken to ensure that
the micrometer or measuring anvils make contact with each of the three wires.

The formula for the effective diameter of the taper thread is :

E;(M—d)sech+—%-—dcosecx/2

where E = effective diameter, M = measurement over the wires, d = diameter of the wires, h
=halfthe angle of taper, /2 = half the included angle of the thread form, n = number of threads
per inch.




85 PITCH ERRORS IN SCREW THREADS

If a screw thread is generated by a single point cutting tool its pitch depends on:

(@) the ratio of linear velocity of the tool and angular velocity of the work
being correct;

(b) this ratio being constant.

If these conditions are not satisfied then pitch errors will occur, the type of
error being determined by which of the above conditions is not satisfied. What-
ever type of error is present the net result is to cause the total length of thread
engaged to be too great or too small and this error in overall length of thread is
called the cumulative pitch error. This, then, is the error which must be determined.
It can be obtained either by:

(@) measuring individual thread to thread errors and adding them alge-
braically, i.e. with due regard to sign;

(b) measuring the total length of thread, from a datum, at each thread and
subtracting from the nominal value.

8.51 Types of Pitch Error
8.511 Progressive Pitch Error

This error occurs when the tool-work velocity ratio is constant but incorrect.
It may be caused through using an incorrect gear train, or an approximate gear




train between work and tool lead screw as when producing a metric thread with
an inch pitch lead screw when no translatory gear is available. More commonly,
it is caused by pitch errors in the lead screw of the lathe or other generating
machine.

If the pitch error per thread is 8p then at any position along the thread the
cumulative pitch error is n8p where » is the number of threads considered. A graph
of cumulative pitch error against length of thread is therefore a straight line
[Fig. 8.12 (@)].
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Fig. 8.12(a). Progressive pitch error. (b) Periodic pitch error.

8512 Periodic Pitch Error

This type of error occurs when the tool-work velocity ratio is not constant.
It may be caused by pitch errors in the gears connecting the work and lead screw
or by an axia! movement of the lead screw due to worn thrust faces. Such a
movement would be superimposed on the normal tool motion to be reproduced
on the work. It will be appreciated that errors due to these causes will be cyclic,
i.e. the pitch will increase to a maximum, reduce through normal to a minimum
and so on.

A graph of cumulative pitch error will thus be of approximately sinusoidal
form as in Fig. 8.12 (), and the maximum cumulative pitch error will be the total
error between the greatest positive and negative peaks within the length of thread
engaged.

8.513 Thread Drunkenness
A drunken thread is a particular case of a periodic pitch error recurring at

intervals of one pitch. This means that the pitch measured parallel to the thread
axis will always be correct, and all that is in fact happening is that the thread is




not cut to a true helix. A development of the thread helix will be a curve and not a
straight line. Such errors are extremely difficult to determine and except on large
threads will not have any great effect,

8.52 Measurement of Pitch Error

Apart from drunken threads, pitch errors may be determined using a pitch measur-
ing machine, the design of which originated at the National Physical Laboratory.
A round-nosed stylus engages the thread approximately at the pitch line and

readings are noted each time the indicator needle comes up to its fiducial mark.
The mechanism of the fiducial indicator is of interest and is shown in Fig. 8.13.

UCIAL
FIDUCIA CRANK

" RADIAL MOTION ALLOWS
" STYLUS TO RIDE OVER
THREAD

TRAVER%\

ALONG THREAD

Fig. 8.13. Fiducial indicator used on pitch-measuring machine.
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from the expected reading. This should normally be repeated with the thread
turned through 180° in case the thread axis does not coincide with the axis of the
centres on which it is mounted. The mean of the two readings, usually determined
graphically, is then used as the pitch error.

8.53 Effects of Pitch Errors

If a thread has a pitch error it will only enter a nut of perfect form and pitch if
the nut is made oversize. This is true whether the pitch error is positive or negative,
and thus, whatever pitch error is present in a screw plug gauge, it will reject work
which is near the low limit of size.

Consider a thread having a cumulative pitch error of 8p over a number of
threads, i.e. its length is np + 8p. If such a screw is engaged with a nut of perfect
form and pitch they will mate as shown in Fig. 8.14 (a).

|l np |

6E
NUT OF PERFECT FORM 1 vl
AND PITCH /2 INCREASE IN EFFECTIVE DIA. 2 |

Ey OF SCREW Ey OF PERFECT
SCREW WITH d i
uT
PITCH ERROR WITH PITCH ERROR [ N
'
e -
np +&p

Fig. 8.14(a). Screw having cumulative pitch error dp in mesh with a nut of
perfect form and pitch.

Consider an enlarged view of the thread flanks at A as in Fig. 8.14 (b).
It is seen that
8p
2
tan ¢ :E
3
op
" 8Ea
.*. 8E3=28p cotan @
where dp is the cumulative pitch error over the length of engagement and 8FE; is
the equivalent increase in effective diameter



The importance of this is emphasized when a Whitworth thread is considered
in which the flank angle 6 is 273° and cotangent 273° =1-920.

For Whitworth threads §Ez=1-920 Sp
For Metric threads 8Eg=1-732 op

A
O
& S
g &
& &

$E,
&)
EFFECTIVE
DIAMETEROF
- - PERFECT NUT

/e !
2 EFFECTIVE

DIAMETER OF
SCREW

Fig. 8.14(b). Enlarged view at A.

The pitch error is therefore almost doubled when the equivalent increase in
effective diameter is calculated. A screw plug gauge having a cumulative pitch
error of 0-006 mm will thus reject all work within 0-012 mm (approximately) of
the low limit in the case of Whitworth threads, and within 0-01 mm in the case
of Metric threads.




Study Material for Expt No. : Gear Measurement

Gear Measurement

7.1 INTRODUCTION

As technology has progressed from the Industrial Revolution to the present day,
the need for closer control over the accuracy of systems used for transmitting the
power made available has also progressed. Probably the most used means of
transmitting power and multiplying torque is through the medium of gear trains.
It is obvious that the strength of gear teeth has had to improve to meet increased
loads, but this is a design problem which is not a primary concern of this book.
However, it is also a requirement of a gear train that it shall have a constant velo-
city ratio. Variations in velocity ratio can cause a cyclic fluctuation of tooth load-
ing which gives rise to (a) fatigue, leading to tooth failure; and (b) noise.

The noise problem is of interest if one considers the development of the auto-
mobile. Early automobiles had rudimentary exhaust silencers and the resulting
engine noise caused most of the other mechanical noises to be overlooked.
FEfficient exhaust silencing made mechanical noises from the gear-box more
apparent. This was silenced by the use of helical gears and closer control in their
manufacture. The gear noise was reduced and carburettor intake noise became
significant which, when reduced by efficient air cleaners and intake silencers,
enabled rear axle ‘whine’ to make its presence felt. The use of spiral bevels and
hypoid gears, again with closer manufacturing controls, reduced this and the
valve timing gears again required attention. By this time, exhaust and intake
silencers were improved and the whole cycle started again.

‘Thus a major item of development in the motor vehicle has been the develop-
ment of efficient gears, and this only considers one commodity. If one considers
this work applied to all of the mechanisms which rely or geared systems to trans-
mit power, the importance of the subject of gear measurement becomes immediately
apparent.

72 SCOPE

A few of the different types of gears required by modern industry have been
mentioned above. Within the confines of this work it is proposed to deal only with
involute gears of straight tooth (spur) and helical types. These constitute a large




proportion of the gears in use today, bevel gears, spiral bevels, and hypoid gears
being topics for works of a more specialist character. Cycloidal gears are used but
little in modern engineering. Their main use is in horological work, which again
the authors consider is outside the scope of this work.

The choice of the involute for the flank curve of gear teeth has two great
advantages for general engineering.

(a) The velocity ratio of a pair of involute gears is constant, regardless of
errors or variations in centre distance.

(b) An involute rack has siraight teeth. This enables the complex involute
form to be generated from a relatively simple cutter.

It is therefore necessary to consider the involute curve in some detail.

73 THE INVOLUTE CURVE

An involute is the locus of a point on a stra1ght line which rolls around a circle
without sllpplng An alternative definition is: the locus of a point on a piece of
string which is unwound from a stationary cylinder.

The curve is therefore as shown
in Fig: 7.1, “

From the figure it is seen that the
length of the generator is equal to the
arc length of the base circle from
the point of tangency to the origin of
the involute at A.

ie. A;B,=arc AB,
A,B,=arc AB, and so on.
Further, the tangent to the
involute at any point, e.g. A,, is
perpendicular to the generator at that

point.

, Notice also that the shape of the
involute depends entirely on the
diameter of the base circle from
; which it is generated. As the base
circle increases, so the curvature of
the involute decreases, until the

V limit is reached for a base circle of

infinite diameter, i.e. a straight
line, when the involute is a straight
Fig. 7.1. The involute curve. line.
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74 THE INVOLUTE FUNCTION

The involute function of an angle may be
defined as the angle made by the radius to
the origin of the involute and the radius to
the intercept of the generator with the
involute. This is the involute function of the
angle between the radius to the point of
tangency of the generator and the radius to
the intercept of the generator and the
involute.

This apparently complex statement is
better described graphically in Fig. 7.2.

In Fig. 7.2:

AOQOC is the involute function of COB.

From the diagram (7.2):
BC=4/0C2-0B?

_4/0C?-0B?
tan ¢ R
But from Fig. 7.1: d ‘
Fig. 7.2. The involute functi
arc AB=BC 1g of ee!,nu;]og 11‘1‘= .e unction
AB i . ' C
. -(—)F—a[x radians +inv radlans—_ﬂOB

.. (¢ +inv ¢) radians=tan ¢
inv ¢s=(tan ¢ — ) radians

i.e. the involute function of an angle is the difference between the tangent of the
angle and the angle in radians.

This term of involute geometry has been dealt with separately as it is of
particular importance in the work to follow.

7.5 DEFINITIONS AND STANDARD PROPORTIONS

A single tooth of a gear is made up of portions of a pair of opposed involutes.
The teeth of a pair of gears in mesh contact each other along a line of action
which is the common tangent to their base circles as shown in Fig. 7.3. As this
is the common generator to both involutes, the load, or pressure between the
gears is transmitted along this line. The angle between the line of action and the
common tangent to the pitch circles is therefore known as the pressure angle, .




From Fig. 7.3:

—OB =cos = Re
ocC Ry
... Rp=Ryp cos ¢

or Dy=D cos y where Dp=dia. of base circle
D =dia. of pitch circle
Jr=pressure angle

The standard values for pressure angle are 143° and 20°, of which 20° is
becoming the most used as it gives stronger teeth and allows gears of smaller
numbers of teeth to be made, without interference with mating teeth.

PRESSURE ANGLE
‘\ L]

PRESSURE ANGLE

¢ L4
ADDENDUM
DEDENDUM
LINE OF
PRESSURE ALY
ANGLE CLEARANCE BASE
v CIRCLE
] Rb
RD

_o.
Fig. 7.3. Pair of spur gears in mesh, showing terms referred to in
the text.

Diametral pitch P is the number of teeth per inch of pitch circle diameter.
This is a hypothetical value which cannot be measured, but it is most important
as it defines the proportions of all gear teeth.

N
P<ep
Module M is the reciprocal of P, i.e.
D
M=%

This method of fixing tooth proportions is in common usage in countries
using the metric system where M is made a whole number of millimetres.




Circular pitch CP is the arc distance measured around the pitch circle from
the flank of one tooth to a similar flank in the next tooth.

wD D 1
CP=%=‘JTM

Base pitch Py is the arc distance measured around the base circle from the
origin of the involute on one tooth to the origin of a similar involute on the next
tooth.

Pyp=CPcos=nMcos

Addendum is the radial distance from the pitch circle to the tip of the tooth.
The nominal value is:

Addendum = % =Module

This may be varied to avoid interference.
Clearance is the radial distance from the tip of a tooth to the bottom of a
mating tooth space when the teeth are symmetrically engaged. Standard values are:

0-157 = 0-250 - 0-400
P P B J _
The value used depends on the type of gears and their application.

0:157 M is normally used for 144° pressure angle gears to Browne and Sharpe
standards.

=0-157 M or 0-250 M or 0-400 M

Clearance =

0-250 M is normally used for Class A,, B, C, and D gears.

0-400 M is normally used for Class A, precision ground gea:rs.

Dedendum is the radial distance from the pitch circle to the bottom of the
tooth space..

Dedendum = Addendum + Clearance
1 0157 = 1157

5T e HLTE.
1 0250 1-250
o=pt+t—p—="7p =1-250 M
1 0400 1-400
0[=F+ P = P =1-400 M

Blank diameter. The diameter of the blank is equal to the pitch circle diameter
plus two addenda:




Blank diameter= D +2 M
but D=NM

.. Blank diameter =NM +2M =(N + 2) x Module or (N; )

Tooth thickness is the arc distance measured along the pitch circle from its
cept with one flank to its intercept with the other flank of the same tooth.

Nominally, tooth thickness =1CP

s Module

———2 DP Oormox ———-2

In fact the thickness is usuall

amount of backlash and may be

Backlash is the circumferenti

other gear being fixed, measure

eliminated.

It will be noted from the above d

specified in terms of

inter

y reduced by an amount to allow for a certain
changed owing to addendum correction.

al movement of one gear of a mating pair, the
d at the pitch circle, bearing clearances being

efinitions that a spur gear can be completely

(a) number of teeth N;
(b) diametral pitch P or module M :
(¢) pressure angle .

In the work on gear measurement which follows

the expressions derived will,
where possible, all be reduced to functions of these di

mensions.

15.3. Terminology of Gear Tooth

A gear tooth is formed by portions of a pair of opposed involutes. Most of the terms used

in connection with gear teeth are explained in Fig. 15.2.

Base Circle. It is CIRCULAR prTch e
the circle from which in- TOP LAND NN SIS
volute form is generated.
Only the base circle on hly/
a gear is fixed and un- Z 22

alterable. - s

. Pitch Circle. It is
an imaginary circle most o S
useful in calculations. It b
may be noted that an in- l

finite number of pitch

circles can be chosen, =T
each associated with its Fig. 15.
own pressure angle.

-DENDLM
D%Ra E

i i i i i ircle which by pure rolling
Pitch Circle Diameter (P.C.D.). It is the diameter of a circle i
action would produce the same motion as the toothed gear wheel. This is the most important

diameter in gears.




Module. It is defined as the length of the pitch circle diameter per tooth. Thus if P.C.D,
of gear be D and number of teeth NV, » then module (m) = D/N. It is generally expressed in mm.

Diametral Pitch. It is expressed as the number of teeth per inch of the P.C.D. ke

Circular Pitch (C.P.). It is the arc distance measured around the pitch circle from the
flank of one tooth to a similar flank in the next tooth. - C.P.=1D/N = tm :

Addendum. This is the radial distance from the pitch circle to the tip of the tooth. Its
value is equal to one module.

Clearance. This is the radial distance from the tip of a tooth to the bottom of a mating
tooth space when the teeth are symmetrically engaged. Its standard value is 0.157 .

Dedendum. This is the radial distance from the pitch circle to the bottom of the tooth
space.

Dedendum = Addendum + Clearance = m + 0.157 m = 1.153 m.

Blank Diameter. This is the diameter of the blank from which gear is out. It is equal
to P.C.D. plus twice the addenda.

Blank diameter = P.C.D. + 2m = mN + 2m =m (N + 2).

Tooth Thickness. This is the arc distance measured along the pitch circle from its
intercept with one flank to its intercept with the other flank of the same tooth.

Normally tooth thickness = C.P./2 = tm/2

But thickness is usually reduced by certain amount to allow for some amount of backlash
and also owing to addendum correction.

Face of Tooth. It is that part of the tooth surface which is above the pitch surface.

Flank of Tooth. It is that part ofthe tooth surface which'is lying below the pitch surface.

Line of Action and Pressure Angle. The teeth of a pair of gears in mesh, contact each
other along the common tangent to their base circles as shown in Fig. 15.3. This path is referred
to as line of action. As this is the common generator to both the involutes, the load or pressure
between the gears is transmitted along this line. The
angle between the line of action and the common tangent
to the pitch circles is therefore known as pressure angle
¢. The standard values of ¢ are 14.5° and 20°.

% )
~. Dia. of base circle D, =P.C.D. x cos ¢.

Base Pitch. It is the distance measured around
the base circle from the origin of the involute on the tooth
to the origin of a similar involute on the next tooth.

: Base circumference

Bage Pitch = No. of teeth

_ & x Dia. of base circle
% N
. 0 LI)VCOS = m cos ¢

Involute Function. It is found from the fun-

damental principle of the involute, that it is the locus of

the end of a thread (imaginary) unwound from the base
circle.

i _PRESSURE
ANGLE

- OA
In Fig. 15.3, op = ¢0s o= LINE OF
ACTION

Fig. 15.3




Mathematically its value is Involute function § = tan -0
where ¢ is the pressure angle.
The relationship between the involute function

INVOLUTE

and the pressure angle can be derived as follows =t e i o "’-'-’QTC”' CIRCLE
InFig. 154,  OA =base circle radius = R, . e W
OP = pitch circle radius = R, i| BASECIRCLE

and BP = involute profile of gear tooth. N 8 (INVOLUTE FUNCTION

AP is tangent to base circle at A, OF ¢)
AbOC = ¢ = pressure angle G
Now OA = OP cos ¢, or R, = R, cos ¢

COB = Involute function of ¢.

Fig. 15.4
By definition of involute, length AP = arc AB
AP AP arcAB arc AB

and tan¢_OA—R—b——ITb—,Also¢+8— R,

¢+ 8=tan ¢, or & = tan ¢ — ¢. - - by

Helix Angle : 1t is the acute angle between the tangent to 4/Vc;</g ;
the helix and axis of the cylinder on which teeth are cut, : hi

Lead Angle : Tt is the acute angle between the tangent to

the helix and plane perpendicular to the axis of cylinder (Refer It ; : 2
Fig. 15.5). i) o

Back Lash : The distance through which a gear can be
rotated to bring its non-working flank in contact with the teeth
of mating gear. (Refer Fig. 15.6).

Fig. 15.5. Illustration of Helix
and lead angle.

Basic Tooth Proportions for Involute Spur Gears

ﬁ Pressure Angles
20° 14.5°
Addendum m m
Dedendum 1.256m 1.157m
Teeth Depth 2.25m 2.157m
Circular teeth thickness nm/2 pm/2
Fillet radius 0.3m 0.157m
LClearance 0.25m 0.157 m

Fig. 15.6. Illustration of Backlash.
Some Important Relationships between Various Elements of Gears :

To find Having Formula
(@) Spur Gears
Module (m) No. of teeth (V) and pitch diameter (D)
Module Circular pitch (p)
Outside diameter (D,) Pitch diameter and Module

Base circular diameter (D) Pitch diameter and pressure angle




will be depicting the compound errors i.e., all errors like eccentricity and tooth form errors etc.,
which occur together and the trace will be as shown in Fig. 15.8.

The machine could also be used to carry out more complex tests by suitable modification
in its operation, e.g., by locking the movable carriage at the running centre distance of the
gears, and by fixing the master gear, the backlash can be determined by setting a dial gauge
at the pitch line of the production gear. It is also possible to check the gears for smooth running
at this setting and this is very essential for gears. This is judged by the noise produced.

For these tests, if master gear is not available, then any two mating gears are mounted
on the spindle and they are tested twice at relative angular positions of 180° to each other so
that any compensating errors in one angular position in gears are also revealed.

15.7. Measurement of Individual Elements

15.7.1. Measurement of tooth thickness. The permissible error or the tolerance on
thickness of tooth is the variation of actual thickness of tooth from its theoretical value. The
tooth thickness is generally measured at pitch circle and is therefore, the pitch line thickness
of tooth. It may be mentioned that the tooth thickness is defined as the length of an arc, which
is difficult to measure directly. In most of the cases, it is sufficient to measure the chordal
thickness i.e., the chord joining the intersection of the tooth profile with the pitch circle. Also
the difference between chordal tooth thickness and circular tooth thickness is very small for
gear of small pitch. The thickness measurement is the most important measurement because
most of the gears manufactured may not undergo checking of all other parameters, but
thickness measurement is a must for all gears. There are various methods of measuring the
gear tooth thickness.

(i) Measurement of tooth thickness by gear tooth vernier calliper. (iz) Constant chord
method. (/i) Base tangent method. (iv) Measurement by dimension over pins.

The tooth thickness can be very conveniently measured by a
gear tooth vernier. Since the gear tooth thickness varies from the
tip of the base circle of the tooth, the instrument must be capable of

measuring the tooth thickness at a specified position on the tooth. a
Further this is possible only when there is some arrangement to fix

that position where the measurement is to be taken. The tooth

thickness is generally measured at pitch circle and is, therefore,

referred to as pitch-line thickness of tooth. The gear tooth vernier cﬁéﬁi‘é

has two vernier scales and they are set for the width (w) of the tooth
and the depth (d) from the top, at which w occurs.

- Considering one gear tooth, the theoretical values of w and d
can be found out which may be verified by the instrument. In Fig.
15.14, it may be noted that w is a chord ADB, but tooth thickness is
specified as an arc distance AEB. Also the distance d adjusted on
instrumentis slightly greater than the addendum CE, w is therefore
called chordal thickness and d is called the chordal addendum.

In Fig. 1514, w = AB = 2AD

Now, ADD = 0 = 360°/4N , where N is the number of teeth, Fig. 15.14
w=2AD =2 x AO sin 0 = 2R sin 360/4N (N = pitch circle radius)
P.C.D. 2R N.m.
module m = el

No.ofteeth” N * 2




2 4N

Also from Fig. 15.14,d = OC - OD
But OC =OE + addendum =R + m = (Nm/2) + m

w=2N—msin(@J:Nm. sin[%] )

Nm 90
and OD=Rcos 8= 5 cos N
Nm Nm 90 Nm 2 90
d=—2—+mg B cos{N]=ﬁ2 [1+N_CDS{NH 5 (2)

Any error in the outside diameter of the gear must be allowed for when measuring tooth
thickness.

Inthe case of helical gears, the above expressions have to be modified to take into account
the change in curvature along the pitch line. The virtual number of teeth Nuv for helical gear
= N/cos® o (o = helix angle)

Hence in Egs. (1) and (2), N can be replaced by N/cos® o and m by m,, (normal module).

w = Ny sin gQcosaot andd = Non, 1+2c053a_COS %coszot
cos® o N ; oStk ; IV N -

These formulae apply when backlash is ignored. On mating gears having equal tooth
thickness and without addendum modifications, the circular tooth thickness equals half the
circular pitch minus half the backlash.

Gear Tooth Calliper.
(Refer Fig. 15.15). It is used to
measure the thickness of gear
teeth at the pitch line or
chordal thickness of teeth and
the distance from the top of a
tooth to-the chord. The thick-
ness of a tooth at pitch line and
the addendum is measured by
an adjustable tongue, each of
which is adjusted inde-
-pendently by adjusting screw
on graduated bars. The effect
of zero errors should be taken
into consideration.

This method is simple
and inexpensive. However it
needs different setting for a
variation in number of teeth
for a given pitch and accuracy
is limited by the least count of
instrument. Since the wear
during use is concentrated on
the two jaws, the calliper has
to be calibrated at regular in-
tervals to maintain the ac- Fig. 15.15. Gear Tooth Vernier Calliper.
curacy of measurement.
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15.7.2. Constant Chord Method. In the above method, it is seen that both the chordal
thickness and chordal addendum are dependent upon the number of teeth. Hence for measur-
ing a large number of gears for set, each having different number of teeth would involve

separate calculations. Thus the procedure becomes
laborious and time-consuming one.

The constant chord method does away with
these difficulties. Constant chord of a gear is
measured where the tooth flanks touch the flanks of
the basic rack. The teeth of the rack are straight and
inclined to their centre lines at the pressure angle as
shown in Fig. 15.16.

Also the pitch line of the rack is tangential to
the pitch circle of the gear and, by definition, the tooth
thickness of the rack along this line is equal to the arc
tooth thickness of the gear round its pitch circle. N ow,
since the gear tooth and rack space are in contact in
the symmetrical position at the points of contact of the
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flanks, the chord is constant at this position irrespec-
tive of the gear of the system in mesh with the rack,
This is the property utilised in the constant chord method of the gearmeasurement.

The measurement of tooth thickness at constant chord simplified the problem for all
number of teeth. If an involute tooth is considered symmetrically in close mesh with a basic
rack form, then it will be observed that regardless of the number of teeth for a given size of
tooth (same module), the contact always occurs at two fixed point A and B. AB is known as
constant chord, The constant chord is defined as the chord joining those points, on opposite
faces of the tooth, which make contact with the mating teeth when the centre line of the tooth
lies on the line of the gear centres. The value of AB and its depth from the tip, where it occurs
can be calculated mathematically and then verified by an instrument, The advantage of the
constant chord method is that for all number of teeth (of same module) value of constant chord
is same. In other words, the value of constant chord is constant for all gears of a meshing

Fig. 15.16

_ system. Secondly it readily lends itself to a form of comparator which is more sensitive than

the gear tooth vernier.

In Fig. 15.16, PD = PF = arc PF = U4 x circular pitch = % % “—"I;VAI?L R LI

Since line AP is the line of action, i.e. it is tangential to the base circle, ZCAP = ¢

.~ Inright angled AAPD, AP = PD cos ¢ = (m/4)m cos ¢

In triangle PAC, AC = AP cos ¢ = (n/4)m cos? ¢

¢ = constant ghord = 2AC = (w/2) m cos? ¢ <2l

where ¢ is the pressure angle (from Fig. 15.16)

For helical gear, constant chord = (1/2) m,, cos? ¢,
where m,, = normal module i.e. module of cutter used and ¢, = normal pressure angle.

Now PC = AP sin ¢ = (/4) m cos ¢ sin ¢

d=addendum—PC=m-gmc0s¢sin¢=m(l—gcosq)sin(bj ..(4)

[For helical gear, d = m,, ( 1- g cos ¢, sin ¢, H
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15.7.2. Constant Chord Method. In the above method, it is seen that both the chordal
thickness and chordal addendum are dependent upon the number of teeth. Hence for measur-
ing a large number of gears for set, each having different number of teeth would involve

separate calculations. Thus the procedure becomes
laborious and time-consuming one.

The constant chord method does away with
these difficulties. Constant chord of a gear is
measured where the tooth flanks touch the flanks of
the basic rack. The teeth of the rack are straight and
inclined to their centre lines at the pressure angle as
shown in Fig. 15.16.

Also the pitch line of the rack is tangential to
the pitch circle of the gear and, by definition, the tooth
thickness of the rack along this line is equal to the arc
tooth thickness of the gear round its pitch circle. N ow,
since the gear tooth and rack space are in contact in
the symmetrical position at the points of contact of the
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flanks, the chord is constant at this position irrespec-
tive of the gear of the system in mesh with the rack,
This is the property utilised in the constant chord method of the gearmeasurement.

The measurement of tooth thickness at constant chord simplified the problem for all
number of teeth. If an involute tooth is considered symmetrically in close mesh with a basic
rack form, then it will be observed that regardless of the number of teeth for a given size of
tooth (same module), the contact always occurs at two fixed point A and B. AB is known as
constant chord, The constant chord is defined as the chord joining those points, on opposite
faces of the tooth, which make contact with the mating teeth when the centre line of the tooth
lies on the line of the gear centres. The value of AB and its depth from the tip, where it occurs
can be calculated mathematically and then verified by an instrument, The advantage of the
constant chord method is that for all number of teeth (of same module) value of constant chord
is same. In other words, the value of constant chord is constant for all gears of a meshing
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_ system. Secondly it readily lends itself to a form of comparator which is more sensitive than

the gear tooth vernier.

In Fig. 15.16, PD = PF = arc PF = U4 x circular pitch = % % “—"I;VAI?L R LI

Since line AP is the line of action, i.e. it is tangential to the base circle, ZCAP = ¢

.~ Inright angled AAPD, AP = PD cos ¢ = (m/4)m cos ¢

In triangle PAC, AC = AP cos ¢ = (n/4)m cos? ¢

¢ = constant ghord = 2AC = (w/2) m cos? ¢ <2l

where ¢ is the pressure angle (from Fig. 15.16)

For helical gear, constant chord = (1/2) m,, cos? ¢,
where m,, = normal module i.e. module of cutter used and ¢, = normal pressure angle.

Now PC = AP sin ¢ = (/4) m cos ¢ sin ¢

d=addendum—PC=m-gmc0s¢sin¢=m(l—gcosq)sin(bj ..(4)

[For helical gear, d = m,, ( 1- g cos ¢, sin ¢, H
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% (z/ the measurements do not depend on two vernier readings, each being function of the
(43 th_e measurgment is not made with an edge of the measuring jaw with the face.
Consider a straight generator (edge) ABC being rolled back and forth along a base circle
. 15.19). Its ends thus sweep out opposed involutes A, AA; and C; CC, respectively. Thus
neasurements made across these opposed involutes by span gauging will be constant (.e.
= A,C; = AyCo = ACy) and equal to the arc length of the base circle between the origins of

ilutes.
Further the position of the measuring

1 on an opposed pair of the true involutes.
e involute at the pitch point of the gear, it is
‘h that the measurement is made approxi

The value of the dis-
1ce between two opposed in-
lutes, or the dimension over
mé%ﬁ@mmm
between the points where the
corTespunimE veshireiasm.
ie.. ABC o Fig, 15.19. Tt can
“he derived mathematicalry as SIiE CRCLE

faces 1s ummporvant s Yong as they axe parallel
As the tooth form is most likely to conform to a
always preferable to choose a number of teeth

mately at the pitch circle of the gear.

follows : Fig. 15.19. Generation of pair of involutes by a common generato

The angle between the poin
inwolute teeth of the gear cut this circle can be easily calculated.

ts A and C on the pitch circle where the flanks of the opg

Let us say that the gear has got NV’ number of teeth and AC on pitch cirdle corres!

i to ‘S’ number of teeth. (Fig. 15.20); .. Distance AC = (S — 1/2) pitches
e . Angle subtended by AC = (§— 1/2) x 2w/ radians.

Angles of arcs BE und BD 4
Involute function of pressure angle =8 = tan ¢ — 0

. Angle ofachD:(S—%Jx%+ 2 (tan ¢ —¢)

! - BD = Angle of arc BD x R},
= (S-% ><-2—E+2(tan¢—¢):\xRpcosq§~ [because R, = R, cos ¢]

N
mN 1\2x mIN
B cos¢|:[S— 2}N +2(tanq)—¢))} [becauseRp= 5 ]
: = Nm co ﬁ—lr+tan -0
£y ;S Nm o) st e
& As already defined, length of arc BD = distance between two opposed involutes ar

o it is
k. =chos¢[tan¢—¢—%+%}

It may
this must be simply subtracted from this derived value.

be noted that when backlash allowance is specified normal to the tooth




Tables are also available which
directly give this value for the given
values of S, NV and m.

This distance is first calculated
and then set in the ‘David Brown’ tangent
comparator (Fig. 15.21) with the help of
slip gauges. The instrument essentially
consists of a fixed anvil and a movable
anvil. There is a micrometer on the
moving anvil side and this has a very
limited movement on either side of the
setting. The distance is adjusted by set-
ting the fixed anvil at desired place with
the help of looking ring and setting tubes.

15.7.6. Tangential Gear Tooth
Calliper. It is utilised for measuring
variations on the basic tooth profile from
the outside diameter of spur and helical
gears. The instrument consists of body,
on the underside of which there are two
slides having the tips acting like measur-
ing contacts. The extended spindle of a
dial indicator with the contact point A
passes between the two

tips along the vertical axis  wMTED

of symmetry of the instru- ﬁ,%';%’;?;‘%g
ment. The measuring tips

are spread apart or

brought together simul- 0

taneously and symmetri-
cally in reference to the
central axis by a screw
which has a right-hand
and a left-hand thread,
The contact faces of the
measuring tips are flat
and arranged at angles of

14.5° or 20° with the central axis. The calliper is set u
of proper diameter based on the module of the

the screw,
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Fig. 15.21. ‘David Brown’ Base Tangent Comparator.




