Materials Selection : Engineering Materials, Properties and Selection Methodology

Outline

- Engineering Materials
- Material Properties
 - Mechanical Properties
 - Thermal Properties
 - Electrical Properties
 - Optical Properties
 - Eco-Properties

Evolution of Materials

Classes of Engineering Materials

Materials

- Metals: Stiff materials with relatively high elastic moduli and exhibit ductility. Can be made strong by alloying, mechanical and heat treatments
- Ceramics and glasses: Materials with high moduli, but, brittle.
 - Tensile strength means the brittle fracture strength;
 - Compressive strength is the brittle crushing strength (15x fracture strength).
 - Low tolerance for stress concentrations (like holes or cracks) or for high contact stresses (at clamping points, for instance)
 - Finds application in bearings and cutting tools
 - Large scatter in the properties

Materials

- Polymers and elastomers: Materials with low moduli
 - High strength can be as strong as metals
 - Elastic deflections can be large due to low moduli
 - They exhibit creep (time dependent deformation under constant load) even at room temperature
 - Very high strength-to-weight ratio
 - Can be made into complex shapes

Materials:Composites

A composite material consists of two phases:

- Primary
 - Forms the matrix within which the secondary phase is imbedded
 - Any of three basic material types: polymers, metals, or ceramics
- Secondary
 - Referred to as the imbedded phase or called the reinforcing agent
 - Serves to strengthen the composite (fibers, particles, etc.)
 - Can be one of the three basic materials or an element such as carbon or boron

Types of composite materials

There are five basic types of composite materials: Fiber, particle, flake, laminar or layered and filled composites.

Classification of composite material

- Metal Matrix Composites (MMCs)
 - Mixtures of ceramics and metals, such as cemented carbides and other cermets
 - Aluminum or magnesium reinforced by strong, high stiffness fibers
- Ceramic Matrix Composites (CMCs)
 - Least common composite matrix
 - Aluminum oxide and silicon carbide are materials that can be imbedded with fibers for improved properties, especially in high temperature applications
- Polymer Matrix Composites (PMCs)
 - Thermosetting resins are the most widely used polymers in PMCs.
 - Epoxy and polyester are commonly mixed with fiber reinforcement

Classification of composite material

- Matrix material serves several functions in the composite
 - Provides the bulk form of the part or product
 - Holds the imbedded phase in place
 - Shares the load with the secondary phase

The reinforcing phase

- The imbedded phase is most commonly one of the following shapes:
 - Fibers, particles, flakes
- Orientation of fibers:
 - One-dimensional: maximum strength and stiffness are obtained in the direction of the fiber
 - **Planar:** in the form of two-dimensional woven fabric
 - Random or three-dimensional: the composite material tends to posses isotropic properties

The reinforcing phase

Types of phases

- Currently, the most common fibers used in composites are glass, graphite (carbon), boron and Kevlar 49.
 - Glass most widely used fiber in polymer compositescalled glass fiber-reinforced plastic (GFRP)
 - E-glass strong and low cost, but modulus is less than other (500,000 psi)
 - S-glass highest tensile strength of all fiber materials (650,000 psi). UTS~ 5 X steel ; $\rho \sim 1/3$ x steel

The reinforcing phase

- Carbon/Graphite –Graphite has a tensile strength three to five times stronger than steel and has a density that is one-fourth that of steel.
- Boron Very high elastic modulus, but its high cost limits its application to aerospace components
- Ceramics Silicon carbide (SiC) and aluminum oxide (Al2O3) are the main fiber materials among ceramics. Both have high elastic moduli and can be used to strengthen low-density, low- modulus metals such as aluminum and magnesium
- Metal Steel filaments, used as reinforcing fiber in plastics

Plate 1: A380 composite materials application. Not shown: CFRP passenger floor panels and struts. Some composite parts are bonded others are not. Several metal parts are also bonded in modern civil and military aircrafts.

Automotive sectors

Lamborghini

Mechanical Properties

- General
 - Weight
 - Expense
- Mechanical
 - Stiffness: E (Gpa)
 - Strength: yield strength
 - Tensile strength: σ_t
 - Fracture toughness: K_{IC}
- Thermal
 - Expansion coefficient
 - Thermal conductivity
- Electrical
 - Conductivity
- Wear corrosion and Oxidation

Thermal conduction

Fracture Toughness

• Fracture toughness ($MPa\sqrt{m}$) measure of the crack resistance of the material

•
$$K_{Ic} = \beta \sigma_t \sqrt{\pi c}$$

- The fracture toughness is determined by loading a sample with a known crack of length 2c
- Fracture toughness are typically well defined for <u>brittle materials</u>

Illustration of Mechanical Properties

- All right(Stiff, strong, tough, light)
- Not stiff enough (needs higher E)
- Not strong enough (needs higher σ_y)
- Not tough enough (needs higher K_{IC})
- Too heavy needs (needs lower density)

Materials

Material Property Chart

Property charts: Stiffness/weight

• Straight lines are the elastic wave speeds $\sqrt{\frac{E}{\rho}}$

ME 423: Machine Design Instructor: Ramesh Singh

22

Modulus to Density

Strength to Density

Fracture Toughness to Density

แกรแนบเบา. เวลเกษรก อแกรก

Modulus to Strength

ME 423: Machine Design Instructor: Ramesh Singh

Specific Modulus to Specific Strength

Fracture Toughness to Modulus

Fracture Toughness to Strength

Thermal conductivity to diffusivity

Expansion to conductivity

Expansion to Modulus

Normalized Strength to Expansion

Strength at High Temperature

Relative Cost

ME 423: Machine Design Instructor: Ramesh Singh

Design for Impact

Wear Rate

Material Selection

- Identifying the desired attribute for objectives and constraints *(Translation)*
- Comparing with real engineering materials for the best match (Screening and Ranking)
 Translation

Mapping Design Requirements to Materials

Screening by Attributes and Links

Screen on attributes

Requirements: must

- operate at 100°C
- be electrical insulator
- · conduct heat well

Example: heat exchanger tubes

Retain materials with:

- max operating temp > 100C
- resistivity R > $10^{20} \mu\Omega.cm$
 - T-conduct. $\lambda > 100 \text{ W/m.K}$

Screen on links

Example: cheap metal window frame

Requirements: must

be extrudable

Retain materials with:

• links to "extrusion"

Screen on both attributes and links

Screening on Attributes

Ranking by Performance

 Objective: Metric of performance which can be maximized or minimized, such as mass, volume, cost per unit attribute

Material Indices: Tie Rod

Minimizing mass for a light strong tie rod •

Minimize $m = AL\rho$ where L is length, A is cross-sectional area and ρ is density

Constraint: $\frac{F^*}{A} \leq \sigma_f$ where F* is the force and σ_f is the failure strength

 $m \ge (F^*)(L)\left(\frac{\rho}{\sigma_f}\right) \implies \text{Material Properties}$

Functional Constraint

Geometric Constraint

Minimize this material index or $\frac{\sigma_f}{\rho}$ specific strength can be maximized $\frac{E}{\rho}$

Light Stiff Panel

- Function: Panel
- Objective: Minimize m of the panel
- Constraints: Bending Stiffness, S* (functional constraint)
 Length L and width b specified (geometric constraint)
- Free Variables: Panel thickness h and material

 $m = AL\rho = bhL\rho$

The bending stiffness S can be given by, $S = \frac{C_1 E I}{L^3} \ge S^*$ and $I = \frac{bh^3}{12}$

$$m = hbL\rho = \left(\frac{12L^3S^*}{C_1Eb}\right)^{\frac{1}{3}}bL\rho = \left(\frac{12S^*}{C_1b}\right)^{\frac{1}{3}}(bL^2)\left(\frac{\rho}{\frac{1}{E^{\frac{1}{3}}}}\right) \longrightarrow \text{Material Properties}$$

$$Mp = \frac{E^{\frac{1}{3}}}{\rho}$$
 (For stiffness); $Mp = \frac{\sigma y^{\frac{1}{2}}}{\rho}$ (For strength)

Light Stiff Beam

- Function: Beam
- Objective: Minimize m of the panel
- Constraints: Bending Stiffness, S* (functional constraint) square cross-section (geometric constraint)
- Free Variables: Area A and material

 $m = AL\rho = b^2 L\rho$

The bending stiffness S can be given by, $S = \frac{C_2 EI}{L^3} \ge S^*$ and $I = \frac{b^4}{12} = \frac{A^2}{12}$

$$m = AL\rho = \left(\frac{12L^3S^*}{C_1E}\right)^{\frac{1}{2}}L\rho = \left(\frac{12L^3S^*}{C_2}\right)^{\frac{1}{2}}(L)\left(\frac{\rho}{E^{\frac{1}{2}}}\right) \quad \Longrightarrow \text{ Material Properties}$$

$$Mp = \frac{E^{\frac{1}{2}}}{\rho}$$
 (For stiffness); $Mp = \frac{\sigma y^{\frac{2}{3}}}{\rho}$ (For strength)

Ashby's Methodology

Material Indices

Material properties --

the "Physicists" view of materials, e.g.

Cost,	C _m
Density,	ρ
Modulus,	Е
Strength,	σ_y
Endurance limit,	σ_{e}
Thermal conductivity,	λ
T- expansion coefficient,	α

Material indices --

the "Engineers" view of materials

Objective: minimise mass

Function	Stiffness	Strength				
Tension (tie)	ρ/E	ρ/σ _y				
Bending (beam)	ρ/Ε ^{1/2}	$\rho/\sigma_y^{2/3}$				
Bending (panel)	ρ/Ε ^{1/3}	$ ho/\sigma_y^{1/2}$				
	X	1				
	Minimise these!					

Selection Using Charts

Materials, Shapes and Processes

Instructor: Ramesh Singh

Process Material Compatibility

		Material Class															
								l									
										_							
				-													
				1	Metals			Cerar	nics & Glas	ses		1	Polymers & Elasto	mers	1	Composite	es
				L								l			1		
			Ferrous	Refractory	Preclous	Heavy	Light	Cementitous	Vitreous	Fine	Glasses	Thermosets	Thermoplastics	Elastomers	PMCs	MMCs	CMCs
	[]	Gravity	2	1	2	2	2	0	0	0	1	0	0	0 .	0	0	0
	Casting	Low pressure	2	0	2	2	2	0	0	0	2	0	0	0	0	1	0
		High pressure	1	õ	2	2	2	0	0	0	1	0	0	0	0	2	0
		Investment	2	2	2	2	2	0	0	0	0	0	0	0	0	0	0
		Injection	0	0	2	0	0	0	0	0	2	2	2	2	2	0	0
	Moulding	Compress	0	0	2	0	0	0	0	0	2	2	2	2	2	1	0
	Moulaing	Blow	0	0	0	0	0	0	0	0	2	0	2	0	0	0	0
	LJ	Foam	0	0	0	0	0	0	0	0	0	2	2	2	0	0	0
		Cold	2	0	2	2	2	0	0	0	0	0	0	0	0	0	0
		Warm	2	0	2	2	2	0	0	0	0	0	0	0	0	0	0
	Deformation	Hot	2	2	2	2	2	0	õ	0	2	Ő	0	0	0	ō	0
	L	Sheet	2	1	2	2	2	0	0	0	0	0	2	0	0	1	0
		T		2	2	2	2	0	1	0	0	2	2	0	2	2	
	[]	Turn		2	2	2	2	0		0	0	2	2	0	2	2	
52	Machining	Grind	2	2	2	2	2	0	2	2	2	0	2	0	0	2	2
Class		Polich	2	2	2	2	2	0	2	2	2	0	0	0	0	1	2
22		Folisii				-											
۳, S	Powder	Sinter/HIP	2	2	2	2	2	0	2	2		0	2	0	0	2	2
Pa	Methods	Slip cast	0	0	0	0	0	0	2	2	2	0	0	0	2	0	
		Spray forming		2	2	2	2	0	2	2	2	2	2	0	2	0	ő
		Hydration	0	0	0			2	0		0	0			0		
	Composite	Lay-up	0	0	0	0	0	0	0	0	0	0	0	0	2	0	2
	Forming	Mould	0	0	0	0	0	0	0	0	0	2	2	2	2	0	0
		Squeeze-cast	1	0	0	2	2	0	0	0	0	0	0	0	0	2	0
		Filament wind	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0
		PVD	0	2	2	2	0	0	0	2	.0	0	0	0	0	1	0
	Molecular	CVD	0	2	2	2	0	0	0	2	0	0	0	0	0	1	2
	Wiethous	Sputtering	2	2	2	2	2	0	0	0	0	0	0	0	0	0	0
		Electroforming	1	0	2	2	0	0	0	0	0	0	0	0	0	0	0
	Special	Electrochemical	2	2	2	2	2	0	0	0	0	0	0	0	0	2	0
	Methods	Ultrasonic	1	2	0	0	0	0	2	2	2	0	0	0	0	0	2
		Chemical	2	2	2	2	2	0	2	2	2	0	0	0	0	0	0
[Thermal Beam	2	2	2	2	2	0	2	2	2	2	2	2	2	2	2
		Weld/braze	2	2	· 2	2	2	0	0	0	0	0	2	0	0	0	0
	Fabrication	Adhesive	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
		Fasten	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
		Microfabrication	2	2	2	2	2	0	2	2	2	2	2	2	2	2	2

Selection by Technical Analysis

Process Material Relationship

Select on processability and material properties

Selection on Similarity

Select on similarity (and innovative substitution)

• How balance objectives ? eg

Performance, P } Conflicting objectives

Plot performance metric P
against cost metric C

• **A** "**solution**", is a material with a given combination of cost and performance

• Dominated and non-dominated solutions

Multi-objective Optimization

- *Solution:* a viable choice, meeting constraints, but not necessarily optimum by either criterion.
- **Dominated solution (A):** some other solution is better by both metrics
- *Non-dominated solution (B):* no one other solution is better by both metrics

- The **trade-off surface** (or Pareto front) is the surface on which the nondominated solutions lie
- Use intuition to select
- Form a value function: a composite objective

Multi-objective Optimization

Summary

- Engineering Materials
- Material Property Charts
- Material Indices
- Material Selection Methodology by Ashby
- Multi-objective Optimization

