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Abstract 
 
As miniaturization of electrical and mechanical components used in modern technology progresses, there is an 
increasing need for high-throughput and low-cost micro-scale assembly techniques. Many current micro-assembly 
methods are serial in nature, resulting in unfeasibly low throughput. Additionally, the need for increasingly smaller 
tools to pick and place individual microparts makes these methods cost prohibitive. Alternatively, parallel self-
assembly or directed-assembly techniques can be employed by utilizing forces dominant at the micro and nano 
scales such as electro-kinetic, thermal, and capillary forces. However, these forces are governed by complex 
equations and often act on microparts simultaneously and competitively, making modeling and simulation difficult. 
The research in this paper presents a novel phenomenological approach to directed micro-assembly through the 
use of artificial intelligence to correlate micro-particle movement via dielectrophoretic and electro-osmotic forces in 
response to varying frequency of an applied non-uniform electric field. This research serves as a proof of concept 
of the application of artificial intelligence to create high yield low-cost micro-assembly techniques, which will prove 
useful in a variety of fields including micro-electrical-mechanical systems (MEMS), biotechnology, and tissue 
engineering. 
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1.     Introduction 
 

Miniaturization of electrical and mechanical 
systems has fuelled a dramatic increase in the reliance 
of modern technology on integrated circuits and micro-
electro-mechanical systems (MEMS). As such, 
research into manufacturing and assembly at the 
micro and nano scale is of increasing interest and 
necessity. The goal of micro-assembly is to create 
multi-part micro-scale devices of high complexity with 
high yield and low cost [1]. 

Many current micro-assembly methods are serial 
processes, in which micro parts are assembled one at 
a time. A common method for serial micro-assembly is 
the use of micro-grippers to pick and place individual 
microparts. This method of assembly suffers from 
being too slow to achieve industrially feasible 
throughput. Additionally, the tools required to perform 
serial micro-assembly must become increasing 
smaller to obtain better assembly resolution, an 
expensive and slow proposition. 

An alternative method for micro-assembly is 
guided, or directed, assembly in which many 
microparts can be assembled in parallel. One example 
of such techniques is the assembly of inorganic 
microparts via polymer-guided assembly [2]. 
Commonly, methods for directed assembly utilize 
forces dominant on the micro scale such as 
electrostatics, surface and capillary forces, and 
thermal forces. The present study relies primarily on 
Dielectrophoretic (DEP) and Electro-osmotic (EO) 
forces. DEP describes a force acting on the induced 

dipole moment of a particle suspended in dielectric 
fluid resulting from an applied non-uniform electric field 
[3]. EO refers to the movement of fluid resulting from 
ion build-up at a charged surface within an applied 
electric field [4]. 

A major issue with directed micro-assembly is the 
complexity of the forces acting in the micro-domain. 
Many of these forces such as DEP and electro-
osmosis act simultaneously on the microparts and thus 
successful prediction of the behaviour of microparts is 
often difficult to achieve. In the absence of sufficient 
isolation of a single force or comprehensive model of 
the various forces acting on the microparts, artificial 
intelligence (AI) can be used to evaluate the response 
of microparts to the applied signals (frequency and 
voltage for DEP) and to guide the manipulation of 
these parts.  

Specifically, present study is looking at the 
utilization of algorithmic AI, where the behaviour of 
microparticles is first captured via digital camera and 
then evaluated mathematically, by comparison of the 
position of particles in individual frames. The 
mathematical algorithms are programmed into the 
software to quantify the output (determination if 
particles are moving towards or away from the 
electrodes) and then correlate this behavior of the 
particles to the given input variables such as the 
frequency of the applied electric field.  

In this study, a novel phenomenological approach 
to micro-assembly utilizing AI is presented. A closed-
loop cyber-physical system was developed to 
characterize the response of polystyrene micro-beads 
to changes in input of an applied electric field 



(including voltage and the applied frequency). Digital 
camera captures a sequence of images that are 
digitized. Image processing is used to recognize 
microparts and determine their pattern of movement – 
towards the electrodes or away from the electrodes. 
Having determined the type of the bead movement 
under the specific input conditions (for example, given 
frequency), the program changes the input conditions, 
and the new sequence of images is analysed. 
Therefore, the system is capable of determining 
frequency ranges in which the beads are attracted to 
or are repelled from the electrodes as well as ranges 
in which the beads are unaffected by the electric field. 

The phenomenological approach to directed 
micro-assembly presented in this paper will find 
application across a variety of fields including 
microsystems and electronics, biotechnology, drug 
delivery, and tissue engineering [5].  

 
2. Methods and Materials 
 
2.1. Fabrication of Electrodes 
 
 The interdigitated gold electrodes (IDEs) were 
fabricated via photolithography and e-beam 
evaporation process. Initially, a thin layer of positive 
photoresist (Shipley) was spin-coated onto a 4-inch 
silicon wafer covered with a 1 μm thick thermal oxide 
layer (University Wafer, South Boston, MA, USA) 
using a Laurell photoresist spinner (Laurell 
Technologies, North Wales, PA, USA) at an initial 
speed of 3000 rpm for 30s. Then, the resist was soft-

baked at 90 °C for 30 minutes on a hot plate 
(Dataplate, Pmc, 732 Series, Dubuque, IA, USA). 
Next, the resist layer was exposed through a 
photomask (CadArt, Bandon, OR, USA) to a UV light 
source at an energy intensity of 10𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚2 for 35s 
using the Karl Suss MA56 Mask Aligner ( Karl Suss, 
Garching, Germany). The portions of the resist layer 
exposed to the UV light were washed away using 
deionized water. 
 A 300 Å layer of chromium was deposited onto the 
wafer using a Temescal CV-8 e-beam evaporator 

(AIRCO.INC, Berkeley, CA, USA), followed by the 
deposition of a second layer (300 nm thick) – that of 
gold. The remaining photoresist was washed away by 
acetone to leave the set of gold IDEs (see Fig. 1). Each 
IDE consisted of 12 individual fingers 70 μm in width, 

separated by a gap of 70 μm (see Fig. 2). 
2.2 Experimental Setup 
 
 34-gauge buss wires (Guasti Wire and Cable, 
Ontario, Canada) were soldered to both contact pads 
of the IDEs using indium solder. The chip containing 
the IDEs was then placed under an optical microscope 
(Nikon Eclipse, Minato, Japan) connected to a cMOS 
digital camera (SPOT Imaging, Sterling Heights, MI, 
USA). Each buss wire was then connected to a Siglent 
2082X function generator (Siglent Technologies, 
Solon, OH, USA) to induce an electric field across the 
fingers of the IDE. 5 μL of polystyrene bead 
suspension, containing 3 μm diameter beads, were 
pipetted onto the IDEs and a slide cover was laid on 
top to reduce evaporation.  
 
2.3 Hardware/Software Integration 
 
 The camera and function generator were 
integrated into the software program to create the 
closed loop system. The live images of the beads were 
captured using the PyAutoGUI Python package and 
was processed using OpenCV. The function generator 
was connected via USB to the computer and the 
frequency of the applied electric field was controlled 
via SCPI commands using the PyVISA Python 
package. 
 
2.4 Software Architecture 
 
 The closed-loop system analyses and directs the 
movement of the polystyrene beads using information 
from the cMOS camera enabled optical microscope to 

Fig. 1. Fabricated gold IDEs in 6” silicon wafer.  

Fig. 2. Electrode fingers of the IDEs. Each electrode 
finger is 70 microns wide. The interdigitated electrodes 
are located on the top of each Π shaped electrode set 
seen on Figure 1. 

Fig. 3. Software Architecture 



monitor the gaps between the IDE fingers (see Fig. 3). 
Designed as a real-time embedded system, this 
system constantly monitors the testbed and makes 
decisions on adjusting the frequency of the electric 
field applied across the testbed which in turn changes 
the magnitude and direction of the DEP force 
experienced by the polystyrene beads.  
 
2.4.1 Particle Detection 
 
 For each frame 𝐼𝐼𝑡𝑡 ∈ 𝐼𝐼, the system utilizes Hough 
Circle Detector (HCD) to detect particles [6]. The HCD 
leverages the Hough Gradient Method implementation 
in OpenCV [7] that detects the circle-shaped objects 
on images [6] (see Fig. 4). For ensuring the detecting 
performance across various experimental setups, the 
system has four parameters for tuning HCD’s 
performance: param_1, param_2, min_radius, 
max_radius. Specifically, param_1 is related to the 
internal Canny detector threshold and param_2 is 
related to the center detection threshold. For each 𝐼𝐼𝑡𝑡, 
the detection result is denoted as a container of 
particles  𝐵𝐵𝑡𝑡 . Such process is abstracted as a 
converting function 𝐹𝐹 . Thus, the relation between a 
new frame 𝐼𝐼𝑡𝑡 and a container 𝐵𝐵𝑡𝑡 can be described as: 
𝐹𝐹(𝐼𝐼𝑡𝑡) = 𝐵𝐵𝑡𝑡 = {𝑃𝑃1,𝑃𝑃2, …𝑃𝑃𝑁𝑁}  where 𝑁𝑁  is the number of 
detected particles and each particle is represented 
with the center 2-D coordinates (i.e. 𝑃𝑃𝑛𝑛 = {𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛}).  

2.4.2 Feature Extraction 
 
 Once detected, the system then transforms 𝐵𝐵𝑡𝑡 
into a corresponding feature vector, denoted as 𝑋𝑋𝑡𝑡 . 
Two assumptions are made. The first one is that the 
particle movement can be represented by the values 
derived from formulaic methods. Second, the direction 
of DEP force is assumed to be perpendicular to the 
electrodes of the testbed. Therefore, the system 
considers a particle’s movement along the x-axis. The 
process of acquiring 𝑋𝑋𝑡𝑡  is abstracted as another 
converting function 𝐺𝐺 , realized by calculating the 
average absolute distance to the reference line where 
the reference line refers to a vertical line that stays in 
between and in the middle of two electrodes. The 
relationship between a new frame 𝐼𝐼𝑡𝑡 to the extracted 
feature 𝑋𝑋𝑡𝑡 is formulated as: 

𝑋𝑋𝑡𝑡 = G�F(𝐼𝐼𝑡𝑡)� = 𝐺𝐺(𝐵𝐵𝑡𝑡) = �
|𝑥𝑥𝑛𝑛  −  r|

𝑁𝑁  
𝑁𝑁

𝑛𝑛=1

 

where 𝑟𝑟 denotes the x-coordinate of the reference line.  
 
2.4.3 Movement Determination 
 

 To capture the macroscopic motion of particles at 
each timestamp t, the system performs a linear trend 
analysis by considering a subset of features between 
current frame and few frames prior. This subset is 
defined as 𝑚𝑚 = {𝑋𝑋𝑡𝑡−𝑘𝑘 ,𝑋𝑋𝑡𝑡−𝑘𝑘+1, …𝑋𝑋𝑡𝑡}  where k denotes 
the length of 𝑚𝑚. Our system first post-processes the 
features in 𝑚𝑚 with Missing-Value Sampling and Data 
Smoothing.  As HCD might end up not detecting any 
particle for 𝐼𝐼𝑡𝑡, the function in Missing-Value Sampling 
finds an alternative value of 𝑋𝑋𝑡𝑡 , thus minimizing the 
negative influence of missing values in the linear trend 
analysis. Besides, the system runs Data Smoothing on 
𝑚𝑚 so that the influence of noise or random errors could 
be minimized. Specifically, a linear convolution with an 
unweighted filter is applied on 𝑚𝑚, allowing the system 
to acquire a cleaner trend during the analysis.  
 
Next, the proposed system uses Linear Trend Model 
(LTM) for determining the macroscopic motion of the 
detected particles. To be more specific, the system 
performs the linear regression to derive a trend with all 
the features maintained in 𝑚𝑚 . For all features in 
{𝑋𝑋𝑡𝑡−𝑘𝑘 ,𝑋𝑋𝑡𝑡−𝑘𝑘+1, …𝑋𝑋𝑡𝑡}, the least-squares regression line 
generates a unique trend line represented by equation 
y = bx + c that minimizes the vertical distance from 
each 𝑋𝑋𝑡𝑡 to the regression line, and the coefficient, 𝑏𝑏, is 
calculated as:𝑏𝑏 =  ∑(𝑥𝑥−�̅�𝑥)∗(𝑦𝑦−𝑦𝑦�)

∑(𝑥𝑥−�̅�𝑥)2
 

where the coefficient 𝑏𝑏  represents the collective 
velocity of all particles. The system uses 𝑏𝑏  and a 
decision threshold 𝛿𝛿  to classify the macroscopic 
motion of particles with a categorical label 𝑌𝑌𝑡𝑡. If |𝑏𝑏| ≤
 𝛿𝛿 , the system classifies the motion as NO_DEP 
because as 𝑏𝑏 is too little to be considered as a DEP 
polarity. In the case where |𝑏𝑏| >  𝛿𝛿 , the system 
classifies the DEP’s polarity as either Positive-DEP or 
Negative-DEP.  
 
2.4.4 Feedback Control Design 
 
 The proposed system implements AI-guidance 
using cyber-physical feedback control system. With a 
predefined sampling rate m, the system repeatedly 
collects and analyses the new frame from the camera 
to acquire a feature 𝑋𝑋𝑡𝑡  as described in Sec. 2.4.1 ~ 
2.4.3. In runtime, each new feature 𝑋𝑋𝑡𝑡 is inserted to the 
end of the watching window W which is realized as 
FIFO (First-In First Out) Queue with k as the size in the 
system. Next, in Non-SETTLE state, the system 
computes 𝑌𝑌𝑡𝑡  that indicates the current testbed state 
from the watching window 𝑚𝑚 = {𝑋𝑋𝑡𝑡−𝑘𝑘 ,𝑋𝑋𝑡𝑡−𝑘𝑘+1, …𝑋𝑋𝑡𝑡}. In 
SETTLE state, the system keeps obtaining inputs from 
the camera and extracting Xt. 
 
 According to 𝑌𝑌𝑡𝑡  and 𝑏𝑏 , the system adjusts the 
frequency or voltage applied by the function generator 
to the electrodes. The adjustments are encapsulated 
as a command packet and sent to the function 
generator. Once the applied signal is adjusted, the 
system switches its state to SETTLE. In SETTLE, the 
system detects the change of the microscopic motion 
for particles induced by the function generator. The 
system monitors two changes: particle response time 
and system response time.  The particle response time 
refers to the time required for particles to manifest the 
effect of function generator’s manipulation. The 
system response time refers to the time needed by the 
system’s analysing components to capture the 

Fig. 4. Particle Detection via HCD. Green lines indicate 
visual recognition of electrodes’ edges and constitute the 
observation window.  



macroscopic movement of particles. 
 
3.  Results and Discussion 
  
 The cyber-physical system detailed in section 2 
above is allowed to run for a total of 4 cycles (applied 
signal via function generator, image acquisition, image 
analysis, data processing/algorithmic guidance, 
change is signal implemented by the function 
generator). The system demonstrated capability to 
accurately detect the polystyrene beads, determine 
their movement resulting from DEP and EO forces, 
and adjust the frequency of the electric field 
accordingly. On average, the Hough Circle Detector 
was capable of identifying 20-25% of the beads in 
each frame, a suitable sample size to estimate the 
overall movement of the beads. 
 During the execution of the program, 4 distinct 
frequencies were tested and the average absolute 
distance of the detected particles from the center of the 
testbed was plotted as a function of frame number, and 
by extension, time (see Fig. 5). The plot shows a clear 
increase in average absolute distance when frequency 

was set to 10 kHz and 20 kHz, correctly identifying the 
positive DEP and EO force attracting the beads to the 
surface of the electrodes at low frequencies. 
Conversely when frequency was set to 4MHz and 
2MHz, the plot shows a decrease in average absolute 
distance, indicating the negative DEP force expected 
at high frequency. 
 
Figures 6a and 6b contain images of single frames 
taken by the program at various points during testing. 
Frame number 300 (see Fig. 6a) was taken while the 
frequency was set to 4 MHz and the frame illustrates 
the beads being attracted to the surface of the 
electrodes via positive DEP and EO. Frame number 
414 (see Fig. 6b) was taken while the frequency was 
set to 20 kHz and illustrates the beads being repelled 
from the electrodes towards the center of the testbed. 

 
 

4. Conclusions 
 
 The cyber-physical system detailed in this study 
successfully demonstrated the capability to identify 
micro particles, algorithmically determine their 
movement resulting from DEP and/or EO forces and 
correlate this movement to changes in the frequency 
of the applied electric field.  
 These results serve as a proof of concept that 
artificial intelligence can be applied to establish a 
phenomenological approach to directed micro-
assembly. By utilizing micro-domain forces such as 
DEP and EO a parallel assembly is achieved which 
could offer significantly higher throughput compared to 
existing serial assembly techniques. Additionally, 
because the magnitude of DEP force is dependent on 
the size of the particles [8], the system and 
experimental setup presented in this research offers 
potential for studying selectivity in heterogeneous 
systems with particles of varying sizes and within 
various media. This initial research design will serve 
as a building block for further research into application 
of artificial intelligence for micro and nano assembly.  
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