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Abstract 

 

Micromilling process uses the micro cutting tool whose diameter can be as low as 20 µm. The low diameter of the 
cutting tool makes it highly susceptible to chatter during machining attributed to low flexural rigidity of cutting tool. 
High speed strategy has been adopted to reduce the chip load which reduces the cutting force and hence chatter 
occurrence is reduced. High speed micromilling process has to be carried out with stable process parameters to 
produce the surface with desired quality. The stable process parameters are generated using machining process 
modeling. However, the accuracy of generated stable process parameters depends on the accuracy of predicted 
force. High speed machining changes the cutting forces when machining is carried out at different cutting velocities 
especially for the machining of low thermal diffusivity based material like Ti-alloy. Consequently, a velocity and chip 
load dependent cutting coefficients has been found to be a most accurate way of predicting the cutting forces during 
high speed micromilling process. The determination of velocity and chip load dependent cutting force requires the 
nonlinear fitment between cutting velocity, chip load and cutting coefficients. The accuracy of fitment for nonlinear 
regression depends on the velocity and chip load selected for the cutting coefficients fitment. The difficulty in carrying 
out the machining at all the cutting velocities further complicates the prediction of cutting forces. Alternatively, deep 
leaning method proposed in the present work based on the back propagation neural network uses weight update 
technique to arrive at most accurate nonlinear relationship of cutting coefficients with the cutting velocity and chip 
load. The three hidden layers has been found to be giving least error between the predicted and observed value of 
the cutting coefficients. The number of iteration has also been optimized in the present work. A comparison has 
also been carried between the force predicted with cutting coefficients obtained using nonlinear regression method 
and deep learning method. The predicted cutting force using deep learning method in X-direction and Y-direction 
gives an error of 13% and 4% at 100000 rpm with respect to experimental cutting forces. The predicted waveform 
has also been found to closer to the nature of cutting force obtained experimentally.   
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1.     Introduction 
 

The demand for micromilling process is increasing 
day by day to produce the products with high aspect 
ratio features. Different industries which use the 
products manufactured by micromilling process are 
biomedical, aerospace, avionics, automobile, 
microelectronics and energy-producing industries. The 
selection of stable process parameters is of utmost 
importance to eliminate the chatter during micromilling 
process. The selection of stable process is obtained 
through generated stability lobe diagram which gives 
the combination of stable spindle speed and depth of 
cut. However, the accuracy of stability lobe diagram 
depends on the accuracy of cutting coefficients used 
for the cutting force modelling. The use of feed 
comparable to edge radius of cutting tool induces the 
size effect in micromilling process [1]. The high speed 
machining excites the high frequency modes of micro 
cutting tool and also changes the cutting forces 
especially for machining of low thermal diffusivity 
material like Ti and Ni-alloy. Consequently, the cutting 
coefficients of mechanistic cutting force modelling 
approach for force prediction in high speed machining 
cannot be assumed independent of process 
parameters like cutting velocity and chip load. Jin and 
Altintas et al. [1] has obtained the cutting coefficient as 
a nonlinear function of chip load by fitting the curve 
using least square error minimization approach. 
Afazov et al. [2] estimated the cutting force as 
nonlinear function of cutting velocity and chip load.  

The use of high speed more than 100000 rpm 
requires the defining of the cutting velocity zone in very 
precise way to achieve the goodness of fitness more 

than 85% to predict the cutting coefficients as a 
nonlinear function of cutting velocity and chip load. The 
fitment of cutting coefficient as a function of cutting 
velocity and chip load for all cutting velocity without 
defining the cutting velocity range reduced the 
goodness of fitment [3]. Liu and Guo [4] proposed a 
hybrid approach by integrating the data driven 
machine learning approach and process mechanics to 
predict the specific cutting energy in milling. They used 
the tree-based gradient boosting method and 
concluded that the machine learning approach 
improved the accuracy of predicted specific cutting 
energy. Artificial neural network can predict the cutting 
forces during helical end-milling of carbon fibre 
reinforces polymers as proposed by Kalla et al. [5]. 
Specific cutting energies were taken as continuous 
function of fiber orientation and chip thickness by Kalla 
et al. [5] for cutting force prediction and concluded that 
artificial neural network has capabilities to capture the 
high nonlinearities nature of specific cutting energies 
during helical end-milling of composite materials [5]. 
Wu et al. [6] have used feed forward back propagation 
artificial neural network to predict the cutting tool life 
during milling of stainless steel. A single layer hidden 
layer with eight neurons was found to be optimum for 
cutting tool life prediction. Cherukuri et al. [7] uses the 
artificial neural network to generate the stability lobe 
diagram for data obtained from the analytical 
modelling of turning process. They concluded that the 
accuracy of the prediction depends on the number of 
hidden layers and the neurons selected per hidden 
layer. Radhakrishnan and Nandan [8] predicted the 
cutting force in milling using artificial neural network 
and concluded that neural network method is more 
accurate than regression method. Briceno et al. [9] 



compared two supervised network for force prediction 
during milling process and concluded that radial 
biased network predicts cutting forces more accurately 
than back-propagation networks. An inclusion of 
uncertainty in cutting forces modeling can predict the 
cutting forces with good accuracy but prediction 
accuracy depends on the accurate capturing of 
standard deviation in cutting coefficients obtained 
experimentally [10]. 

Most of the work carried out for the prediction of 
cutting forces by using artificial neural network is 
limited to low spindle speed (<60000 rpm). The 
selection of single hidden layer with few neurons was 
found to be predicting the cutting force with good 
accuracy. However, there is requirement to study the 
number for hidden layers and required neuron for 
hidden layers for prediction of cutting forces in high 
speed micromachining process. Hence, in the present 
work a neural network architecture has been optimised 
for accurate prediction of cutting force as a nonlinear 
function of machining parameters. 

 
2. Methodologies 

 
In the present work cutting force modelling has been 
carried out using the mechanistic approach. Different 
experiments have been carried to determine the 
tangential and radial cutting coefficients. The 
estimated cutting coefficients have been curve fitted by 
minimising the least square error to get the nonlinear 
relationship of cutting coefficients with cutting 
velocities and chip load. The nonlinear relation of 
cutting coefficients with cutting velocity and chip load 
has also been obtained using Artificial Neural Network 
(ANN) based deep learning method. Finally, the 
cutting force has been predicted with the predicted 
cutting coefficients at different cutting velocities and 
chip loads. The predicted cutting forces has also been 
compared with the experimentally obtained cutting 
forces. The methodologies adopted in the present 
work is shown in Fig. 1. 

 

Fig. 1 Methodologies for the force prediction 

3. Cutting Force Modelling 

A mechanistic approach has been used for the cutting 
force modelling. The tangential and radial cutting 
forces on a flute j of the cutting tool are directly 

proportional to cutting area, given as: 
 
                𝐹𝑡,𝑗 = 𝐾𝑡𝑐𝑎ℎ(∅𝑗)                                         (1) 

 

       𝐹𝑟,𝑗 = 𝐾𝑟𝑐𝑎ℎ(∅𝑗) 𝑎𝑛𝑑 𝐹𝑟,𝑗 = 𝐾𝑟𝐹𝑡,𝑗                             (2) 

where 𝐾𝑡𝑐  and 𝐾𝑟𝑐 are the tangential and radial cutting 

coefficients, respectively. ℎ(∅𝑗) is the instantaneous 

chip thickness and a being the depth of cut. 𝐾𝑟 is the 

ratio of radial cutting coefficient to tangential cutting 
coefficient. The overall cutting forces for all N flutes 
involved in cutting can be obtained as: 

         𝐹𝑇 = ∑ 𝐹𝑡,𝑗
𝑁
𝑗=1    and    𝐹𝑅 = ∑ 𝐹𝑟,𝑗

𝑁
𝑗=1                        (3) 

 
The tangential and radial cutting forces for a flute j at 

any instantaneous position ∅𝑗 are obtained from 

coordinate transformation of the measured X and Y-
direction cutting forces (Fig. 3(b)) using below 
equations. 
                𝐹𝑥,𝑗 = −𝐹𝑡,𝑗𝑐𝑜𝑠∅𝑗 − 𝐹𝑟,𝑗𝑠𝑖𝑛∅𝑗                         (4) 

 

               𝐹𝑦,𝑗 = 𝐹𝑡,𝑗𝑠𝑖𝑛∅𝑗 − 𝐹𝑟,𝑗𝑐𝑜𝑠∅𝑗                        (5) 

 
The cutting coefficients have been assumed as a 
nonlinear function of cutting velocity (V) and chip load, 
given as: 

             𝐾𝑡𝑐 = 𝐶𝑉
𝛼ℎ̅𝛽 and 𝐾𝑟𝑐 = 𝐷𝑉

𝛾ℎ̅𝛿                   (6) 

where C and D are the constant.  𝛼, 𝛽, 𝛾  and 𝛿 are the 
exponents which depends on the machining process 
parameters, material and geometry of workpiece and 

cutting tool. ℎ̅ is the average chip load which is 

obtained as; 

                             ℎ̅ =
2

𝜋
𝑓𝑡                                       (7) 

A nonlinear regression fitment has been used using 
least square minimization equation given as below to 
obtain the constants and exponents of Eq. (6). 

         𝑒𝑟𝑟𝑜𝑟 (𝑒) = ∑ ∑ (𝐹𝑒𝑥𝑝𝑖,𝑝 − 𝐹𝑡ℎ𝑒𝑜)
2𝑚

𝑝=1
𝑛
𝑖=1              (8) 

where n is the numbers of run at each feed and velocity 
and m is the number of samples selected for the 
fitment. 𝐹𝑒𝑥𝑝 and 𝐹𝑡ℎ𝑒𝑜 are the root mean square value 

of experimental and fitted force, respectively. 
 
4. Deep Learning Method 

Artificial neural network (ANN) method of deep 
learning uses a different hidden layers to establish a 
relationship between the output and the input. The 
weight which is multiplied to each neurons of a layers 
before it can be fed to other layers has to be optimised 
to obtain the accurate relationship between the output 
and the input. The use of feedback loop is necessary 
to optimise the weight and hence, a feedforward back 
propagation neural network has been used in the 
present work.  

 
Fig. 2 ANN modelling 

 
The selection of activation functions for input and the 
hidden layers has been carried out by minimising the 
error between the predicted and the observed cutting 
coefficients. The minimisation of error is obtained by 
minimising the cost function given as: 
 

               𝐽(𝑤) =
1

2
∑ (𝐾𝑡𝑐

(𝑖)
− 𝛷(𝑧(𝑖)))2𝑖                          (9) 

where w is the weight and 𝑧(𝑖) is the input to the layers 
i obtained from the activation function. The rectilinear 
(ReLU) activation has been found to be following the 
trend of the cutting coefficients and is given as: 
                        𝛷(𝑧) = max (0, 𝑧)                                (10) 
 

Experiments at different cutting velocity 

and chip load

Cutting coefficients at different cutting 

velocity and chip load

Deep learning using ANN for cutting 

coefficient prediction

Initial value of number of hidden layers 

and neurons in input, hidden and output 
layers

Is there minimum

error between 
predicted and 

observed cutting 

coefficients

Estimate the 

cutting forces

No. of iterations

YN



where 𝑧 is the net input to a layer. The number of 

neurons in the hidden layers and the number of hidden 
layers have to be optimised to minimise the error 
between the observed and the predicted cutting 
coefficients. The number of iteration (Epoch) for weight 
optimization has also be varied to select the optimum 
epoch for minimizing the prediction error. The optimum 
epoch is highly desirable as there can be increase in 
the computational time due to large epoch.  

 
5. Experiments 

The experiments have been carried out at developed 
high speed micromachining center in machine tools 
lab of IIT Bombay. The spindle of three axes high 
speed micromachining can rotate up-to 140000 rpm 
with maximum torque of 4.3 N-cm. The stacked X and 
Y- axes linear stages are driven by brushless DC servo 
motor with accuracy of ±1 µm and resolution of 0.5 µm. 
The Z-axis is equipped with counter balancing 
pneumatic cylinder for providing the depth of cut. The 
Z-axis is driven by brushless DC servo motor with 
accuracy of ±0.3 µm and resolution of 0.5 nm. The 
experimental set-up is shown in Fig. 3(a).  

            
(a)                                         (b) 

Fig. 3(a) Experimental set-up; (b) Micromilling process 
modeling 

All the experiments have been carried out with two 
fluted uncoated tungsten carbide micro-end mill of 
diameter 500 µm without any lubrication. Different 
slots have been machined on Ti6Al4V workpiece 
having thickness of 3 mm. The machining has been 
carried out at spindle speed varying from 20000 to 
100000 rpm at an interval of 20000 rpm. The feed rate 
used for machining has been varied from 2 µm/flute to 
10 µm/flue at an interval of 1 µm/flute. Depth of cut of 
30 µm is kept constant for all the experiments. X-and 
Y-direction cutting forces have been measured using 
Kistler dynamometer (Model:9256C1) and both 
tangential and radial cutting coefficients have been 
obtained from the tangential and radial cutting forces. 
80% data has been used for training the ANN and 20% 
data has been used for testing of the ANN model. The 
testing conditions for ANN modelling is given in table 
1.  
 

Table 1: Testing conditions for ANN 

Condition no. 
Feed rate 
(µm/flute) 

Cutting Velocity 
(mm/sec) 

0 2 523.34 

1 5 523.34 

2 2 1046.67 

3 3 1570 

4 5 1570 

5 2 2616.67 

6 5 2616.67 

7 8 2616.67 

8 10 2616.67 

 
 
 

6. Results & Discussion 

First the tangential and radial forces are obtained 
through the coordinate transformation of measured X 
and Y-direction cutting forces. The tangential and 
radial cutting coefficients are obtained from the 
tangential and radial forces using Eq. 1 & 2. The 
tangential and radial cutting coefficients are found to 
increasing with a decrease in chip load (Fig. 4(a) and 
(b)). The increase in cutting coefficients is attributed to 
increase in specific cutting energy at low chip load and 
hence shows the phenomenon of size effect in 
micromilling process.   
 

      
(a)                                         (b) 

Fig. 4 (a)Tangential and (b) radial cutting coefficients at 
different cutting velocities and chip loads 

A machining process like macro milling process 
induces a thermal softening in material which reduces 
the cutting forces and maintains the uniform cutting 
coefficients at higher velocity. However, during high 
speed micromilling process; there is increase in cutting 
coefficients with the increase in cutting velocity (Fig. 
4). The increase in cutting coefficients with velocity is 
because of the strain hardening owing to low thermal 
diffusivity of the Ti6Al4V. 
 
6.1 Cutting Coefficients Prediction 

The experimentally measured cutting coefficients has 
been trained with the ANN method of deep learning. 
The cutting coefficients were trained as a nonlinear 
function of cutting velocity and chip load with different 
hidden layers. Two input layers consists of cutting 
velocity vector and chip load vector has been used for 
training along with tangential and radial cutting 
coefficients as the output layers. The hidden layers 
have been varied from one to five with different 
neurons for minimising the predicted cutting 
coefficients. Three hidden layers with five hundred 
neurons has been found to be giving the minimum 
error for the predicted cutting coefficient as shown in 
Fig. 5. The training of the neural network has been 
carried out with both sigmoid and ReLu activation 
function. The activation function ReLu is found to be 
giving less error than Sigmoid. The error at different 
testing conditions (table 1) with three hidden layers is 
found to be lying within 20% for tangential and radial 
cutting coefficients (Fig. 5(a)& (b)). The large 
prediction error is observed at condition 2 (Fig. 5) i.e. 
at velocity 1046.67 mm/sec (40000 rpm) attributed to 
machine tool system natural frequency at 40000 rpm. 

           
(a)                                            (b) 

Fig. 5 Testing data prediction with ANN model 
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The selection of number of iteration (Epoch) is critical 
steps for minimising the prediction error. Note that 
increasing the epoch will increase the computational 
time and hence training the cutting coefficients with 
different epochs has been carried out. Figure 6(a) and 
6(b) shows the error with increasing epoch for training 
of tangential and radial cutting coefficients. The 
optimum epoch has been selected as 400 for 
prediction of cutting forces. 

 

         
(a)                                             (b)             

Fig. 6 Error in tested data at different epoch (a) 
Tangential cutting coefficient (b) radial cutting 

coefficients 
 

6.2 Cutting Force Prediction 

The cutting forces have been predicted using the 
cutting coefficients obtained from the training of ANN 
model. The predicted cutting forces have also been 
compared with the cutting force predicted with 
nonlinear regression fitment of velocity and chip load 
with cutting coefficients. The prediction error at 20000 
rpm, 8 µm/flute feed and 30 µm depth of cut compared 
to experimentally measured cutting force is 2.4% and 
5.1% for X-direction and Y-direction cutting forces, 
respectively with ANN trained model while the 
predicted error is 23.3% and 33.7% for X-direction and 
Y-direction cutting forces, respectively with nonlinear 
regression based model (Fig. 7(a) & (b)). The 
prediction error for X-direction cutting force at 60000 
rpm, 8 µm/flute feed and 30 µm depth of cut is reduced 
to 16% with ANN model compared to 38.8% error 
achieved with nonlinear based regression model. 
However, the prediction error at 100000 rpm, 8 
µm/flute feed and 30 µm depth of cut in Y-direction 
cutting force is found to be 4% with ANN model while 
the error is 2.7% with nonlinear regression based 
model as shown in Fig. 7(b). 
 

 
(a)                                  (b) 

Fig. 7. Cutting force prediction at different spindle speed, 8 
µm feed rate and 30 µm depth of cut (a) FX(b) FY 

 

7. Conclusions 

In the present work, deep learning based ANN has 
been used to predict the velocity and chip load 
dependent cutting coefficients. Furthermore, cutting 
forces have been predicted using the estimated cutting 
coefficients from the training of ANN model at different 
machining conditions. The cutting force has also been 
predicting using the nonlinear regression based 
fitment of velocity and chip load with cutting 

coefficients. Finally, predicted cutting forces have 
been compared with the measured cutting forces. 
Following conclusions can be made from the present 
work: 

 Three hidden layers with ReLU activation function 
have been found to be training the cutting 
coefficients with good accuracy. 

 Optimum no. of iterations (Epoch) was found to be 
400 for minimum error of prediction of cutting 
coefficients. 

 The error in predicted X-direction cutting forces 
was 38.8% with nonlinear regression based 
modelling of cutting coefficients while error 
achieved with ANN model is 16% at 60000 rpm, 8 
µm/flute feed and 30 µm depth of cut. 

 Similarly, the error in predicted Y-direction cutting 
forces was 2.72% with nonlinear regression 
based modelling of cutting coefficients while error 
achieved with ANN model is 4% at 100000 rpm, 8 
µm/flute feed and 30 µm depth of cut. 

 The cutting force predicted with ANN model based 
cutting coefficient predicts cutting forces more 
accurately than nonlinear regression based 
model. 
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